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Gdańsk University of Technology

Radosław Słowiński
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Abstract—Semantic segmentation plays a very important role
in many robotic tasks, i.e. autonomous driving. While recent
computer vision algorithms achieve impressive performance on
many benchmarks, they lack robustness - presented with an
image from different distribution (e.g. weather conditions unseen
during training), may produce erroneous prediction. As such it
is desired that a system would be able to reliably predict its
confidence measure. However, it is unknown, how well the un-
certainty estimation methods for semantic segmentation methods
work in the real-world scenario, under distributional shift. In this
work, uncertainty estimation is evaluated under varying level of
domain shift: in cross dataset setting, but also when adapting
model trained on data from simulation. It was shown that an
ensemble, consisting of models using different backbones and/or
augmentation methods yield very competitive performance, and
greatly improve model calibration under domain shift setting.
Further, it was shown, that such ensemble of models can be
utilized in the downstream task of domain adaptation, where
it was used to improve the model accuracy in the self-training
setting.

Index Terms—uncertainty estimation, semantic segmentation,
domain adaptation, self-training, ensemble of models

I. INTRODUCTION

In recent years visual recognition has witnessed an im-
pressive progress on many benchmarks. However, application
of deep learning methods for agents operating in the real-
world, e.g. autonomous driving has been limited. A significant
challenge is that current vision models lack robustness [1].
It was shown that current CNN-based models are sensitive
to novel type of noise [2], changes in context [3] or novel
weather conditions [4]. Those examples show that CNNs are
sensitive to distributional shift: when the test-time distribution
of data differs from the training distribution. Additionally,
current models seems to be biased towards texture information
[5], largely ignoring shape information. This again, can be very
dangerous for the real-world deployment, for example in case
of sensors noise [6].
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What is more, current models tend to be overconfident in
their outputs [7]. The problem is even more evident for the
distributional shift [8]. For models operating in the real-world
it is of great importance to be robust to such distributional
changes, because it for many applications it is not possible
to collect a large and diverse enough dataset that contains all
possible situations that may occur during deployment (e.g. new
weather or lighting conditions, different types of distortions).

A task of special importance for agents operating in the real-
world is reliable uncertainty estimation, which can be benefi-
cial in many ways. During deployment agent could warn that
its prediction is not reliable (medicine), or could effectively
integrate predictions from different modalities (autonomous
driving) [9]. Uncertainty estimation could be also used for
pseudo-labelling of unlabelled data, to further improve model
accuracy in the target domain in self-training setting [10].

In this work we focus on studying uncertainty estimation
for semantic segmentation, which is a very important task with
large potential of applications. Further, our study focuses on
distributional shift which is of great importance for real-world
applications We study uncertainty calibration in different set-
tings:

• when model trained on the simulation is tested on real-
world data (large distributional shift)

• cross-dataset evaluation (mild distributional shift)

Further, we utilized a state-of-the art method for model
calibration, namely ensemble of models [8], [11], to improve
the model calibration. This allow to greatly improve calibra-
tion of predictive uncertainty, especially under domain shift.
Finally, we show the effect of using ensemble of models on
downstream task - domain adaptation, for which we utilize
a popular self-training approach [10], [12], [13]. Our study
is aimed at the reality-check for uncertainty estimation and
domain adaptation methods. Especially studying performance
for the varying domain shift for the aforementioned methods
is important empirical work for real-world applications. We
have focused on autonomous driving applications, due to the
availability of large annotated datasets from both simulation
and real-world, and potential applications. Our contributions



are as follows:
• We study how the uncertainty estimation for semantic

segmentation is affected by varying level of distributional
shift. Further an ensemble of models approach is evalu-
ated in the same setting.

• We show that simple color transformations can be as ef-
fective as style-transfer data augmentation for increasing
models’ robustness.

• We show how ensemble of models can be utilized in the
self-training approach to further improve model adapta-
tion to the target domain.

II. RELATED WORK

Robustness. Evaluating models in out-of-distribution
(OOD) setting, when the test-time dataset is from different
distribution than training data is important for real-world
applications [8], [14], [15]. This is because machine learning
models might provide wrong predictions when presented with
for example noisy data, different lighting or weather conditions
[6]. To improve models’ robustness in visual recognition
several methods based on data augmentation were proposed,
of which style-transfer data augmentation is very popular
[5], [16]. In our work, style-transfer data augmentation was
utilized, but we also noticed that simply applying color-
jittering during training can be beneficial for the cross-dataset
evaluation, which confirms a recent finding that very simple
naturalistic augmentation can be very effective [17].

Uncertainty estimation. One of the problems with modern
neural networks is that they are poorly calibrated and tend to
be overconfident in the predictions [7]. Different techniques
exists for improving estimates of predictive uncertainty. A
classical approach is called temperature scaling, where the
model confidences are scaled using post-hoc procedure on the
held-out validation set [18]. A popular approximate Bayesian
approach is a dropout-based model, where the predictive
uncertainty is computed based on the multiple outputs of the
model on given image (with dropout enabled) [19]. Another
sampling based approach uses agreement between ensemble of
models as a measure of model uncertainty [20]. Interestingly
using ensembles was shown to yield the best results on
uncertainty estimation under the distributional shift [8], [11].
For the ensembles the common setup is to use the neural
networks trained using different random weights initialization,
to induce diversity between models [21]. This is because it was
shown that networks pretrained on the same dataset stay in the
same basin in the loss landscape, and thus reduce variation
in the models [22]. However, we found that semantic seg-
mentation models trained on evaluated datasets using random
initialization perform rather poor. As such, we show that it is
possible to create efficient model ensemble using models with
different backbones and data augmentations.

Domain adaptation. While it is a standard to evaluate ma-
chine learning models on i.i.d., for the real-world deployment
the data may come from different distribution than training
data. As such many methods for domain adaptation were
proposed which uses unlabelled data from the target domain

to improve the accuracy of the model. Popular approaches
includes matching image statistics between domains [23],
learning shape-based representation [12], self-learning [12],
self-supervision [24] or using data from simulation [25], [26].
Using simulated data is in particular interesting, since it
simulation allows to generate numerous and diverse training
examples. At the same time, difference in data distribution
between source and target domain is very challenging for the
real-world problems and sometimes using the labelled data can
actually hurt performance [17]. As such it is important to eval-
uate models’ performance under varying level of distributional
shift.

In our work we make use of self-learning method which
works in two stages. First, given a trained model, confident
predictions are gathered for the target domain, which are
also called pseudo-labels. In the next stage, the pseudo-labels
are used to finetune the model, which allow for domain
adaptation. The potential problem with self-learning is that
gathered pseudo-labels might contain erroneous predictions.
As such, we propose to use an ensemble approach to gather
the pseudo-labels, as ensembles are known to have both good
accuracy and uncertainty estimation, which are crucial for the
efficient pseudo-labeling stage.

Similar to our work, in [27] it was shown that ensemble
of models is efficient for improving uncertainty estimation
in medical image segmentation. We additionally show the
effect of ensembles under distributional shift and its utility for
downstream task of domain adaptation. Ensemble predictions
on unlabelled dataset were also used as soft targets for direct
training supervision in knowledge distillation framework [28],
[29]. Here we use an alternative approach where the least
confident predictions are discarded during training.

Similar to us, [12] use style-transfer data augmentation to
train a base model, which is further adapted to the target
domain using self-training. We show that simpler data aug-
mentations can also be very efficient, and that ensemble of
models makes the finetuning stage more efficient which makes
our work complementary.

III. METHODOLOGY

A. Semantic Segmentation

Semantic segmentation can be viewed as a pixel-wise clas-
sification problem where the goal is to assign to each pixel
a predicted category c ∈ {1, ..., C}. As it is now common
in visual recognition area, semantic segmentation models are
mostly based on Convolutional Neural Networks (CNNs), for
example FCN [30]. As it is a classification problem a standard
cross-entropy loss can be used to optimize the model weights
over the training images:

LCE = − 1

N

N∑
i=1

C∑
c=1

(yi = c)log(p(ŷi = c)) (1)

where (yi = c) ∈ {0, 1} indicates whether class c is correct
class for pixel i and ŷc is a predicted probability for class
c at pixel i, and N is the number of pixels. For each pixel



model returns a logit vector zi ∈ Rc. Further a softmax
function is applied pi = softmax(zi), which returns a list
of predicted class probabilities for given pixel. Class with
the highest probability is used as the predicted class with
associated probability score.

Over years many different architectures were developed
and in our work we have used DeepLabV3+ [31], which is
commonly used in the community. Furthermore, one can use
different backbones (e.g. large ResNet-101 or a lightweight
MobileNet) accordingly to the requirements.

For evaluation two metrics are used. Pixel accuracy simply
measures how many % of pixels are correctly predicted.
Another popular metric is mean IoU (intersection over union).
IoU metric is computed for each class and then the mean value
(mIoU) is reported.

B. Uncertainty Estimation

An output of semantic segmentation network is a predicted
class c for each pixel, associated with confidence value p.
Ideally such classifier would be well calibrated - correct
predictions should be associated with high confidence and
poor predictions contrary. One of the ways to measure model
calibration is to compute an Expected Calibration Error (ECE)
[7]. To compute ECE score pixel-wise predictions are par-
titioned into M equally-sized bins based on the confidence
value and the ECE score is computed as the difference between
the average confidence and the average accuracy in each bin,
weighted by the number of predictions in each bin:

ECE =

M∑
m=1

|Bm|
n
|acc(Bm)− conf(Bm)| (2)

where Bm is the set of indices that falls into the mth bin. Intu-
itively, when a well-calibrated segmentation network outputs
a 90% confidence value for some set of pixels, it should be
correct in 90% of the cases. The lower the value, the better
calibration is obtained (0 means perfect calibration).

C. Ensemble of models

To improve model calibration, we utilize model ensemble
method which was shown to provide the best results among
other methods, especially under distributional shift [8]. In
ensemble approach it is common to train models using ran-
domly initialized networks to induce diversity between models
[21]. However, we found that semantic segmentation models
trained on GTA or Cityscapes dataset, without pretraining
performs rather poor. As a result we use ImageNet pretraining,
however in order to achieve diversity between models different
backbones are used and / or augmentation methods. It was
shown in the literature that using 5 models can already provide
very good results [8], and because of the computational
budget, we use 5 models in our experiments. Namely given M
independently trained models, a final semantic segmentation
pE for the image x can be computed as the average of all
models predictions:

Fig. 1: Different augmentation strategies applied to sample
images from the GTA dataset. First column - color transfor-
mations, second column - style transfer.

pE(x) =
1

M

M∑
i=1

pm(x) (3)

where pm is the prediction of the mth model in the ensemble.

D. Data augmentation

In order to improve models’ adaptation to the distributional
shift a style-transfer data augmentation was utilized, which
was shown to improve models’ robustness [5], [16]. As the
source of style images, Kaggle’s Painter By Numbers1 dataset
was used, similar as in [5] and during training a stylized image
is sampled with probability p = 0.5, otherwise original image
is used. In order to generate stylized dataset we have used
method presented in [32].

We also hypothesized that using simple color transforma-
tions could be also beneficial, in the domain adaptation setting
as it would make the model more invariant to the texture
information. As such, as an alternative to the style-transfer, a
following color jittering transformations from the Tensorflow
API2 were also used during training: random changes in
brightness, contrast, saturation and hue of the images. Details
are described in the implementation details section.

Using different augmentation strategies could be also bene-
ficial in the ensemble, as the models trained with different
augmentation might learn different representations. Fig. 1
shows examples of augmented images.

IV. EXPERIMENTS

A. Datasets

For our experiments, popular semantic segmentation
datasets were used. All of them contain dense pixel-level
semantic annotations for the same 20 classes (including ignore
class - usually background).

GTA [33] is a dataset for which data were collected in
the simulated environment, i.e. a modern computer game. It

1https://www.kaggle.com/c/painter-by-numbers/
2https://www.tensorflow.org/api docs/python/tf/image



consists of 22466 training and 2500 validation images and
is commonly used to evaluate simulation to real transfer.
Cityscapes [34] is a popular autonomous driving dataset for
which data was collected in 27 cities in Germany, consisting
of 2975 training images and 500 validation images. Although
Cityscapes is a diverse dataset, a potential limitation is the
fact that the data was collected mostly during daytime in
good weather conditions. Berkeley Deep Drive (BDD) dataset
[35] provides data collected in diverse weather conditions
(e.g. rain, snow), scene types(city, highway, countryside) and
also images recorded during nigh-time. Pixel-level annotations
are provided for 10000 training and 1000 validation images.
Finally, also the Foggy Cityscapes [36] dataset is used, which
contains an original Cityscapes images refined with synthetic
fog effect. Tests are performed on this dataset to provide ad-
ditional measure of robustness of trained models to distortions
unseen during training.

In our experiments we focus on domain adaptation from
simulation to real data (GTA→ Cityscapes) and cross-datasets
evaluation (Cityscapes → BDD).

B. Implementation details

For all experiments DeepLabv3+ [31] network was used
with different backbones (ResNet-101, Xception41, Xcep-
tion65) pretrained on ImageNet. Specifically, all models have
been trained on 2 GPUs for 100.000 steps with batch size of
16. As in the original paper, a polynomial decay learning rate
is used with initial learning rate = 0.01 and parameter power
set to 0.9.

Data augmentations are consistent with official implemen-
tation3, specifically random scaling (in range 0.5 to 2.0) and
left-right flipping was applied during training procedure. All
images has been rescaled to the size 512 x 1024 pixels. The
color jittering data augmentation was applied using Tensor-
flowAPI with following transformations: random brightness
(adjust factor in range[0, 0.25)), random contrast (contrast
factor in range [0.5, 1.5)), random saturation (saturation factor
in range [1.0, 3.0)) and random hue(hue offset in range [0,
0.25)). Chosen hyperparameters were experimentally validated
to provide visually diverse images.

All models are evaluated on the validation sets (as test sets
ground-truth data is not publicly available). During fine-tuning
stage models are trained for 25.000 steps as we noticed that
the training loss has converged around 20.000 steps for all
the models. When reporting the results CJ model stands for a
model trained using color jittering transformations, while SIN
stands is a model trained using style-transfer, as in [5].

C. Baseline models

First, DeepLabV3+ model with ResNet backbone is trained
on both GTA and Cityscapes datasets and further evaluated
(Table I. Several observations can be made. First, there is
a very big drop in accuracy when the models are evaluated
under domain shift, and the gap is larger for sim to real

3https://github.com/tensorflow/models/tree/master/research/deeplab

TABLE I: Performance of DeepLabv3 using ResNet-101
backbone under different evaluation settings.

Model name mIoU pix. acc ECE mIoU pix. acc ECE
GTA → GTA GTA → Cityscapes

Baseline 80,8 96,6 0.16 25,4 60,1 23.36
CJ 80,6 96,4 0.21 40,4 83,7 6.5
SIN 77,2 95,9 0.21 40 83,9 5.06

Cityscapes → Cityscapes Cityscapes → BDD
Baseline 74,1 95,5 1.49 42,8 83,9 9.55
CJ 74,4 95,4 1.36 49,1 89,4 5.07
SIN 71,4 95 1.18 49,3 89,8 4.56

adaptation (GTA to Cityscapes) when comparing with cross-
dataset evaluation (Cityscapes to BDD). Further it can be
observed that texture based data augmentation (Color jitter
and style-transfer), only slightly affects the performance on the
source domain, but they show a really impressive performance
in the domain adaptation setting. For GTA to Cityscapes the
mIoU has increased from 25.4 to 40.4 and similarly for
Cityscapes to BDD mIoU has increased from 42.8 to 49.1.
Nevertheless, the domain gap is still quite large, model trained
on Cityscapes dataset achieves mIoU of 74.1, compared to
40.4 achieved by model trained on GTA dataset.

Surprisingly, applying simple color transformations works
as well as using an advanced technique of style-transfer,
which is consistent with very recent finding [37]. Looking
at the model calibration, one can notice that all of the models
are almost perfectly calibrated when evaluated on the source
domain, however when evaluated under domain shift the
ECE metric has greatly increased, e.g. for model trained on
Cityscapes dataset the metrics has increased from 1.49 to 9.55
when evaluated on the BDD dataset instead of Cityscapes.
Consistent, with recent finding it was shown that using texture
based data augmentation improves model calibration under
domain shift [16], with SIN model obtaining slightly better
results than using color transformations.

D. Model calibration

To improve model calibration, an ensemble of models
method was used, which utilizes three different backbones
(ResNet-101, Xception41, Xception65) and two different aug-
mentation methods (color jitter and style-transfer). We also
experimented with PNAS architecture, which is known to
achieve great accuracy, however the performance was not
satisfactory, as no pretrained model is currently available for
that model. Table II shows performance in cross-dataset setting
for the Xception models. Comparing to Table I one can see
that Xception models perform slightly better than models using
ResNet-101 as the backbone.

Table III shows ensemble performance when 3 and 5 models
are used in the computation. For M = 3, we have used
models trained using color jittering transformations (ResNet-
101 and Xception backbones) and for M = 5 two additional
models trained using style transfer augmentation were used
(ResNet-101 and Xception41 backbones). While results with
no domain shift are comparable, under the domain shift the



TABLE II: Xception models performance under cross-dataset
setting.

Name mIOU pix. acc ECE
GTA → Cityscapes

Xception41 (CJ) 41.8 82.7 7.3
Xception41 (SIN) 43.7 86.3 4.05
Xception65 (CJ) 41.3 81.97 7.47

Cityscapes → BDD
Xception41 (CJ) 52.6 90.3 4.5
Xception41 (SIN) 51.1 90.9 3.74
Xception65 (CJ) 52.4 90.4 5.09

TABLE III: Ensemble of models performance.

Model name mIoU pix. acc ECE mIoU pix. acc ECE
GTA → GTA GTA → Cityscapes

Baseline (M=3) x 96.7 1.49 x 69.81 4.2
Augmented (M=3) 81.9 96.8 0.81 43.2 84.7 2.45
Augmented (M=5) 81.4 96.7 1.02 44.5 86.27 1.09

Cityscapes → Cityscapes Cityscapes → BDD
Baseline (M=3) x x x x x x
Augmented (M=3) 77.2 96.0 0.36 55.7 91.3 1.99
Augmented (M=5) 77.0 96.0 0.29 56.2 91.7 1.09

obtained results are better when using 5 models. The mIoU
has increased from 43.2 to 44.5 and from 55.7 to 56.2 on
Cityscapes and BDD datasets respectively. Similarly the ECE
is significantly reduced on both datasets. Also it is very
important to notice that the ensemble performance is better
than its strongest member, i.e. for the Cityscapes to BDD
transfer the strongest single model obtains mIoU of 52.6
(Xception41 - CJ) while the ensemble accuracy has greatly
improved to 56.2. Similarly, the ECE has greatly improved
for the ensemble under domain shift: for GTA to Cityscapes
transfer the ensemble ECE is 1.09, while the best results from
single model is 4.05 (Xception41 - SIN). Additionally fig. (2)
shows calibration plot. Comparing model calibration of our
highest-capacity model (Xception65) with the calibration of
the ensemble. Overall, it was confirmed that our ensemble
improves both accuracy and uncertainty calibration, especially
under domain shift.

One of the potential usages of well-calibrated uncertainty
estimation is a self-training. For that purpose, we first estimate
the precision / recall points for different confidence thresholds
t (fig. 3). Namely, such curve is an approximation of how
many % of pixels can be automatically annotated with what
precision. Overall, it can be noticed that much higher recall
values are obtained for the ensemble. For example, at preci-
sion of 95% for the Xception65 model the recall is around
56.5%, while for the the ensemble it has increased to 71.2%.
This shows that ensembles are a very powerful technique. A
complimentary work to ours, shows that ensembles can be
used to efficiently label new dataset [38]. Ensemble was used
to coarsely annotate new dataset with high accuracy, and then
human annotators were employed to refine initial predictions.

E. Domain adaptation

As it was shown, ensemble of models allowed to improve
model precision in the domain adaptation setting, and also

Xception65 Ensemble

Fig. 2: Calibration plots for Xception65 model and model en-
semble (M=5) evaluated on the GTA→ Cityscapes adaptation.
Note great calibration for the ensemble of models.

Xception65 Ensemble

Fig. 3: Precision / recall points evaluated at different confi-
dence threshold in range [0.1, 0.995] on GTA → Cityscapes
transfer.

greatly improved uncertainty estimation which can be effi-
ciently utilized in the self-training setting. Firstly, semantic
segmentation model is used to obtains pseudo-labels on the
target datasets, using some threshold t. In the literature, thresh-
old of value 0.9 is commonly used [12], and the same value
is used in our experiments. For the ensemble variant, such
threshold allows to annotate 70.1% of the pixels with 92.6%
accuracy. Fig. 4 shows obtained pseudo-labels. In general, it
can be noticed that the ensemble’s labels are less noisy, and the
object boundaries are more tightly aligned around the object
of interest.

After the pseudo-labels were obtained for target datasets,
they were used for model finetuning. In this section results
for different models are presented:

1) ResNet-101 using standard data augmentation.
2) ResNet-101 trained using additional color jittering data

augmentation.
3) Previous model finetuned on target datasets using

pseudo-labels obtained by that model (CJ + fine in the
tables)

4) ResNet-101 finetuned on target datasets using pseudo-
labels obtained by model ensemble (CJ + ens in the
tables)

Table IV shows final results, including per-class evaluation.
Firstly, consistent with other works, the self-training approach



Xception65 Ensemble

Fig. 4: Examples of pseudo-labels obtained obtained on GTA
→ Cityscapes transfer (first row), and on Cityscapes → BDD
transfer (second row).

improves the model accuracy (from 40.4 to 41.2 and from 49.1
to 51.4 on Cityscapes and BDD datasets respectively). When
the pseudo-labels are collected using an ensemble approach,
a model accuracy has further greatly increased.

Important problem with ensemble of model is that one
has to train and evaluate multiple models which is very
costly. However, recently introduced BatchEnsemble method
significantly reduced the computational and memory costs
[39]. Similarly, it was shown that training one neural network
with multi-input multi-output (MIMO) configuration can be
efficient strategy to improve models’ robustness. Yet, applying
those ideas to high-level task of semantic segmentation is
important future work.

V. CONCLUSIONS

In this work calibration of model predictive uncertainty
under different, realistic for real-world application setting was
studied. It was shown that ensemble of models allowed to
significantly improved the uncertainty estimation, especially
under domain shift. Notably, the performance gains are con-
sistent when the domain gap is large (simulation to real
transfer). Our ensemble consists of models using different
backbones and/or data augmentations. Interestingly, it was
also shown, that simple color transformations can achieve
similar performance to much more sophisticated style-transfer
augmentation and both types of data augmentation are crucial
in the domain adaptation setting.

Further, the ensemble of models was utilized for domain
adaptation using self-training method. The improved uncer-
tainty calibration and model accuracy allowed to significantly
improve the finetuning stage, the mIoU has increased from
41.2 to 44.0, and from 51.4 to 54.2 on Cityscapes and BDD
datasets respectively.
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