
Detecting the position of feet
on the floor of a large virtual
reality cave in the Immersive
3D Visualisation Lab
Krzysztof Karpusiewicz

Jan Kwarcinski

Mateusz Kołakowski

Krzysztof Dubanowicz

Abstract—Feet position detection in a CAVE system can be important for tracking user’s position
during application operation. Currently, in the Immersive 3D Visualisation Lab at the Gdansk
University of Technology, it is possible to determine the user’s position based on the location
of markers on the glasses, but this is insufficient to determine where the person’s feet are. To
solve this problem, we propose a method that can determine the location of the feet of people
standing on the floor of the CAVE based on the shadows seen from under the floor.

PROBLEM DESCRIPTION The Immersive 3D
Visualisation Lab has a position detection system
based on locating markers on glasses, allowing
for simulating the parallax effect. Such a solution
is optimal for accurately determining the position
of the head of a person in a cave, allowing the
parallax effect to be performed reliably. However,
it does not determine the position of the rest
of the body. While the position of the hands is
easy to determine using controllers typical in VR
environments, the current system has no method
to determine the position of the feet of people
in the cave. Our goal is to create a foot tracking
method based on foot shadows on the cave floor.
The semi-transparent cave floor allows the image
to be projected from the outside in such a way
that it is seen by the person inside. A side effect
of the semi-transparency is the shadow cast by the
person standing on the floor, as seen from under
the cave (Fig. 1). The detection method analyses

video from cameras under the cave to determine
the existence and position of the shadows, allow-
ing us to locate the user’s feet.

State of the art
Due to the nature of the problem and the

CAVE system, there are almost no sources pre-
senting existing solutions. During the literature
review, we used the following databases: Sco-
pus, SpringerLink and IEEE. 766 articles were
retrieved, from which 9 items were selected.

At an early stage of the work, we considered
using an algorithm based on machine learning [1],
but during the verification of current approaches
[3], we decided to rely on classical contour
finding algorithms. An additional problem with
the mentioned approach would be the need to
manually prepare and label a large training set.
However, this approach should not be completely
discarded in the future - using the foot detection

Published by the IEEE Computer Society © 2022 IEEE 1



Figure 1. A view of the CAVE floor from below

heuristic presented in our paper, such a set can
be easily generated with much less effort (only
a manual correction of possible mislabelings is
necessary).

Many of the papers dealt with image sub-
traction of images [4] , but they did not directly
address the problem at hand. Most discussed the
methods used for motion analysis, i.e., subtracting
images from two moments in time, which makes
it possible to select changes and detect areas
where motion has occurred. Unfortunately, these
methods cannot be directly transferred to the
feet detection problem because the perspective
distortion occurring between the image displayed
on the CAVE floor and the image observed by
the camera is not taken into account. In addition,
the perceived image is distorted by reflections
from the lamp light of the projector beneath the
floor and (for darker floors) reflections of other
equipment beneath the cave.

We considered using the previous frame in the
video analysis to reduce situations where a foot is
detected in a location to which it could not have
moved or a foot being lost by the algorithm. The
algorithm that would be used for this purpose is
described in the paper [8].

One of our references during our work, was
the article [9], which presented a very efficient
way to detect ellipses and presented achievable
times. We used the repository provided by the

authors of the article to see if the detection
of ellipses could be directly transferred to feet
recognition in CAVE or if it could be adapted to
it. The first tests ended with satisfactory results,
therefore we decided to use a similar approach.

Image Subtraction Problems
A typical solution for finding changing objects

in a video image is to use the image subtraction
technique, which consists of finding differences
between two images created at different times.
Such an operation is widely used, especially in
motion detection, but in the case of our problem,
motion can be caused by both a change in the
display image and a shadow cast by the detected
feet. Instead of varying the images over time, we
can extract two images, where the only differ-
ences are the elements of interest. These images
are the image taken from the camera (Fig. 2) and
the image projected on the cave floor (Fig. 3).
Theoretically, the difference of these two images
would allow the shadowed areas to be perfectly
distinguished. However, out trials have shown
significant problems with this approach (Fig. 4):
correction of camera image distortion is difficult
and inefficient.

The problems with this approach are caused
by various optical distortions, both those associ-
ated with the camera and described in the "Pro-
posed Solution" section, and distortions caused by
the optics of the projector projecting the image

2



Figure 2. Image based on which image subtraction
test was performed, after perspective and lens distor-
tion correction

Figure 3. Image displayed on the floor of the cave

Figure 4. Image after subtraction is performed

onto the cave floor. A bigger problem, however,
is the difference in brightness and color of the
different parts of the floor. These differences
are caused by light from the walls, ceiling, and
cave environment and do not seem to be easily
removable. A prominent example of such light
would be the red tint in the image seen on the
floor (Fig. 2), which is caused by the image
displayed on the walls.

Above you can see the result of manually
trying to match and subtract the images: the
projected image and the extracted image from the
camera. The extreme dark areas are where the
difference between the images is greatest. Take
note of the bottom left corner of the image, where
the significant difference is caused by different
brightness of the camera image in some parts of
the floor.

Despite its low utility in the detection stage,
the displayed image can potentially be used to
find false positives found by our proposed algo-
rithm, caused, for example, by the display image,
that do not appear to be detectable by other
means.

Proposed Solution
The method we used can be divided into

two stages, preprocessing and actual detection.
The first stage of image preprocessing (Fig. 5),

February 2022 3



Figure 5. Example image on which the detection
was performed. Note that the right part of the image,
where the projector glare is located, is rejected

Figure 6. Image after perspective correction. The
positions of the feet detected at the next stage have
been plotted on it

in order to improve the performance in further
stages, is to extract the area of interest in the im-
age, and to perform the correction of distortions
caused by the camera perspective (Fig. 6). The
calibration defining the cave floor area was done
manually, but since the image capture cameras are
to be mounted under the cave, the requirement for
manual calibration does not seem to be a problem.

The next step, however, which was discarded
in the final processing version because of per-
formance issues, was to perform a correction for
the barrel distortion introduced by the lens of the
device used to take the images. The correction
was intended to improve the accuracy of matching
the input image with image displayed on the

Figure 7. Binarization result

floor, but after discarding this plan, we found that
the effect of barrel distortion on our data was
relatively small and removing it would not affect
the quality of detection.

The operations of conversion to greyscale
image, low-pass filtering, and image binarization
are performed on the preprocessed image (Fig.
7). Contour detection is performed on the new
image, which yields a list of shapes present in
the image. We consider contours inscribable in
a rectangle with an empirically determined area
between 0.9% and 2% of the image area and an
aspect ratio between 10:21 and 1:5 to be the feet
of a person standing on the floor.

Performance and processing tests

Testing Equipment

Performance tests were performed on a Dell
personal laptop running Windows 10. Processor:
Intel i7-7700HQ @2.80 GHz, 4 cores, 8 threads,
RAM: 16 GB

Input Data

The images were divided into 3 categories
(Fig. 8):

• Clean - floor visible in solid color with no
details displayed.

• Partially noisy - part of the floor contains
displayed elements

• Noisy - the floor shows images with high detail

4



Figure 8. A table showing the cases assigned to the
categories defined for the tests

Performance was tested against image cate-
gories and the target scaled image resolution. The
tests verify that programmatically changing the
resolution of the input data can positively affect
the performance of the solution. The time to load
images into memory is not included in the results.

Perspective correction performance
The following table shows the performance of

perspective correction. The results do not include
the time it takes to resize the image (Table 1 and
Table 2).
.

Table 1. Preprocessing time performance for image types.
Image size Clean Partially

noisy
Noisy

720x480 15.90ms 16.25ms 16.39ms
1280x720 16.06ms 16.44ms 16.41ms
1920x1080 16.57ms 16.76ms 16.85ms

Table 2. Preprocessing time performance for image types
- details

Image
type

Image
size

Mean Error Deviation

Clean 1280x720 16.06ms 0.233ms 0.218ms
Clean 1920x1080 16.57ms 0.320ms 0.381ms
Clean 720x480 15.90ms 0.302ms 0.283ms
Noisy 1280x720 16.41ms 0.272ms 0.227ms
Noisy 1920x1080 16.85ms 0.319ms 0.298ms
Noisy 720x480 16.39ms 0.116ms 0.097ms
Partially
noisy

1280x720 16.44ms 0.306ms 0.286ms

Partially
noisy

1920x1080 16.76ms 0.274ms 0.229ms

Partially
noisy

720x480 16.25ms 0.268ms 0.251ms

Foot Detection Performance
The following table shows the foot detection

performance in the finished image. The results
do not include the time it takes to change the
resolution and correct the perspective (Table 3
and Table 4).

Table 3. Time performance of feet detection for different
image types.

Image size Clean Partially
noisy

Noisy

720x480 20.1ms 19.42ms 18.48ms
1280x720 54.57ms 56.47ms 57.27ms
1920x1080 118.93ms 125.85ms 133.09ms

Table 4. Time performance of feet detection for different
image types - details

Image
type

Image
size

Mean Error Deviation

Clean 1280x720 54.57ms 0.607ms 0.538ms
Clean 1920x1080 118.9ms 1.523ms 1.425ms
Clean 720x480 20.10ms 0.238ms 0.222ms
Noisy 1280x720 57.27ms 0.593ms 0.555ms
Noisy 1920x1080 133.1ms 2.605ms 3.478ms
Noisy 720x480 18.48ms 0.505ms 1.472ms
Partially
noisy

1280x720 56.47ms 0.862ms 0.764ms

Partially
noisy

1920x1080 125.9ms 2.432ms 2.389ms

Partially
noisy

720x480 19.42ms 0.348ms 0.325ms

Time performance of complete frame
processing

The following table shows the performance
of the total processing of an image frame. The
results include the time taken to change the
resolution and correct the perspective (Table 5
and Table 6).

February 2022 5



Table 5. Time performance of the whole algorithm run
for different image types

Image size Clean Partially
noisy

Noisy

720x480 38.97ms 39.06ms 39.01ms
1280x720 78.72ms 77.72ms 78.54ms
1920x1080 150.1ms 151.2ms 145.0ms

Table 6. Time performance of the whole algorithm run
for different image types - details

Image
type

Image
size

Mean Error Deviation

Clean 1280x720 78.72ms 1.086ms 0.963ms
Clean 1920x1080 150.1ms 2.093ms 1.855ms
Clean 720x480 38.97ms 0.615ms 0.545ms
Noisy 1280x720 78.54ms 1.357ms 1.270ms
Noisy 1920x1080 145.0ms 1.698ms 1.418ms
Noisy 720x480 39.01ms 0.651ms 0.578ms
Partially
noisy

1280x720 77.72ms 0.854ms 0.757ms

Partially
noisy

1920x1080 151.2ms 2.956ms 2.765ms

Partially
noisy

720x480 39.06ms 0.491ms 0.460ms

Performance - summary

The amount of displayed details has no effect
on time performance of feet detection. The reso-
lution of the input images has the greatest impact
on the foot detection rate (7).

Table 7. Feet recognition performance per image type
Image size Frames per second
Full HD (1920x1080) 6 fps
HD (1280x720) 12 fps
480p (720x480) 25 fps

Accuracy for different cases
The input data were divided into 3 categories

(Fig. 9). The ’clearly visible’ category is char-
acterized by high contrast between the feet and
background and no visible ground texture. The
’moderately visible’ category consists of images
with low contrast shadows and optional ground
texture. In the barely visible category, the feet
shadows are almost imperceptible and the ground
texture is dominant.

Figure 9. Table showing the quality categories of the
input data

No differences in foot detection accuracy were
observed for the resolutions given in the 7 table.
The foot detection accuracy is satisfactory for
the input data categories with good feet visibility
(Table 8).

Table 8. Accuracy of feet detection for different image
categories. The number of feet is in parentheses

Feet Detected Not
detected

False
positive

Clearly visi-
ble

89% (41) 11% (5) 0

Moderately
visible

20% (10) 80% (39) 0

Barely visi-
ble

0% (0) 100% (14) 13

When processing the source image, the fol-
lowing parameters and their effect on the results
were noted:

Wall and floor brightness

The brightness of the walls and floor has a
critical effect on the results obtained (Fig. 10).
Feet were best detected when the walls had high
brightness, while the floor was dark. In the case
of dark walls and floor, the resulting image was
noisy, causing false detections. In the case of a
light floor and walls, feet were not detected.

6



Figure 10. Example results of the algorithm

Figure 11. Example results of the algorithm

Displayed environment
The level of complexity of the image dis-

played on the floor had a significant impact on
the outcome of the algorithm (Fig. 11). Numerous
irregular shapes negatively affected the interpreta-
tions, often causing the feet to be invisible to the
algorithm; the resulting image was noisy and false
positives occurred. A surface with uniform colors
and little noise positively affected the results.

Feet position
The results were negatively affected when the

slippers were in contact, forming a shape that was
rejected by the algorithm.

February 2022 7



Shape of slippers
For best results, the shape and size of the

slippers should be fixed. This is due to the need
to establish the dimensions that the program con-
siders to be the shapes it is looking for.

Camera tilt and position
It is necessary that the camera image is cap-

tured at one fixed angle. The calibration of the
program, which should be done before the first
run, is to determine the exact position of the floor
in the image, which ensures correct perspective
correction. Because of the planned permanently
mounted cameras, this problem does not appear
to be significant.

Implementation
We started our work on the library by creating

a Proof of Concept in Python, using OpenCV.
We used it to see if the algorithm worked for the
test images collected in CAVE. After encouraging
results, it was decided that the tested algorithm
was to be implemented in the final version of the
library.

The final implementation of the library was
written in C# (as required by the system that
uses Unity). We used Emgu CV, which allows
usage of OpenCV functionalities in .NET. The
library allows running a continuous search for
feet positions for a user-specified set of cameras
or for a pre-recorded video. The feet positions are
acquired by the user by querying an object of the
LiveFeetDetector class. The system architecture
is shown in Fig. 12.

Figure 12. System architecture

The result of feet detection is a list
of RotatedRect objects that consist of: po-
sition, size, and rotation angle of rectangles
(x, y, w, h, rotation). The coordinates and size
of the feet are represented as their ratio to the size
of the image obtained after perspective correction
and are values between 0 and 1. The origin of the
coordinate system is the upper left corner of the
processed image. It is necessary to translate the
positions returned by the library into coordinates
in the CAVE environment.

The library consists of two classes - LiveFeet-
Detector and FeetDetection. The first one is used
for real-time image processing. It is necessary
to create an instance of the class and provide
the camera ID. The client application obtains
information about the positions of detected feet
by calling the getBoxes method. The second class
allows to run detection on a single image and can
be used, for example, for testing or for tagging a
set of images.

Requirements for the CAVE
Environment

Due to the design of the cave, it is not possible
to cover the entire cave floor with a single camera.
It caused by the glares created by projectors’
lamps. The optimal solution seems to be placing
four cameras under the corners of the floor. Re-
ceived images can, after perspective correction,
be combined into a single image covering the
whole floor, although it is not clear whether this
would not affect the quality of detection in the
area between them.

Another potential problem is the different
shape and size of people’s feet. In the Immer-
sive 3D Visualisation Lab, two sizes of slippers
are used. For this reason, it is important to set
appropriate threshold values for feet detection.

Summary
The main factors that affect the quality of

detection are the brightness of the displayed im-
ages and the level of complexity of the image
displayed on the cave floor. More complex images
introduce noise that can prevent detection or
cause false detections. In the ideal situation, a
uniform or minimally noisy image is displayed on
the floor. The brightness of the projected images
consists of two components: the brightness of the

8



image on the floor and the brightness of the image
on the walls and ceiling of the cave. Since the
shadow cast on the floor is caused by light coming
from the walls and ceiling, increasing the bright-
ness of these surfaces increases the contrast of the
shadow and makes it easier to recognize. Floor
brightness has the opposite effect - a brighter
floor decreases the contrast of the shadow, making
detection difficult, if not impossible.

The algorithm we have presented allows for
correct detection of feet positions in good condi-
tions. To increase the quality of detection, many
modifications can be considered. Some of them
are: basing the detection results on the previous
frame, which may allow to increase the detection
confidence. Another possibility would be to pair
the feet and retrieve the head position information
to determine the person’s position more accu-
rately.

REFERENCES

1. Liu, L., Ouyang, W., Wang, X. et al. Deep Learning for

Generic Object Detection: A Survey. Int J Comput Vis

128, 261–318 (2020). https://doi.org/10.1007/s11263-

019-01247-4.

2. Croitoru, I., Bogolin, SV. & Leordeanu, M. Unsu-

pervised Learning of Foreground Object Segmen-

tation. Int J Comput Vis 127, 1279–1302 (2019).

https://doi.org/10.1007/s11263-019-01183-3.

3. Czygier, J., Tomaszuk, P., Łukowska, A., Straszyński, P.,

& Dzierżek, K. (2020). Classical algorithm vs. machine

learning in objects recognition doi:10.1007/978-3-030-

17798-0_58.

4. Varghese, A., G, S. Sample-based integrated

background subtraction and shadow detection.

IPSJ T Comput Vis Appl 9, 25 (2017).

https://doi.org/10.1186/s41074-017-0036-1.

5. Cui, B., Créput, JC. A Systematic Algorithm for

Moving Object Detection with Application in Real-

Time Surveillance. SN COMPUT. SCI. 1, 106 (2020).

https://doi.org/10.1007/s42979-020-0118-5.

6. Christie, D. A., & Sukma, T. (2018). Comparative eval-

uation of object tracking with background subtraction

methods. Paper presented at the Proceedings of the 3rd

International Conference on Informatics and Computing,

ICIC 2018, doi:10.1109/IAC.2018.8780483.

7. Al-Mayyahi, M. H. N., Barnouti, N. H., & Abo-

maali, M. (2018). Vehicle detection and license

plate recognition system. International Journal of

Engineering and Technology(UAE), 7(4), 3170-3174.

doi:10.14419/ijet.v7i4.19154.

8. Blokus, A., Krawczyk, H. Systematic approach to bi-

nary classification of images in video streams us-

ing shifting time windows. SIViP 13, 341–348 (2019).

https://doi.org/10.1007/s11760-018-1362-1.

9. Lu, C., Xia, S., Shao, M., and Fu, Y., “Arc-support Line

Segments Revisited: An Efficient and High-quality Ellipse

Detection”, arXiv e-prints, 2018.

February 2022 9


	State of the art
	Image Subtraction Problems
	Proposed Solution
	Performance and processing tests
	Testing Equipment
	Input Data
	Perspective correction performance
	Foot Detection Performance
	Time performance of complete frame processing
	Performance - summary

	Accuracy for different cases
	Wall and floor brightness
	Displayed environment
	Feet position
	Shape of slippers
	Camera tilt and position
	Implementation

	Requirements for the CAVE Environment
	Summary
	REFERENCES

