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Abstract. Liquid biopsy is a useful, minimally invasive diagnostic and
monitoring tool for cancer disease. Yet, developing accurate methods,
given the potentially large number of input features, and usually small
datasets size remains very challenging.
Recently, a novel feature parameterization based on the RNA-sequenced
platelet data which uses the biological knowledge from the Kyoto En-
cyclopedia of Genes and Genomes, combined with a classifier based on
the Convolutional Neural Network (CNN), allowed significantly improv-
ing the classification accuracy. In this work, we take a closer look at
this approach and find that similar results can be obtained using signif-
icantly smaller models. Additionally, competitive results were achieved
using gradient boosting. Since it has another advantage of adding inter-
pretability to the model, we further analyze it in this work.

Keywords: Image-based classification · Tumor Educated Platelets ·
RNA sequencing · liquid biopsy.

1 Introduction

Liquid biopsies offer a minimally invasive sample collection instead of tissue biop-
sies of solid tumors, traditionally used in cancer evaluation. The most common
material for this type of analysis is blood: the source of circulating tumor DNA,
circulating tumor cells, miRNAs, exosomes and, lately, tumor-educated platelets
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(TEPs). The introduction of high-throughput sequencing techniques allowed for
the unprecedented resolution of the analysis. However, generated data complex-
ity and a multitude of features created the need for more advanced approaches
than assuming a simple cut-off for final result interpretation. The utility of Sup-
port Vector Machine (SVM) and Particle Swarm Optimization-enhanced SVM,
known as throbmoSeq classifier, applied to sequenced RNA of tumor educated
platelets has already been demonstrated for cancer detection (e.g., non-small cell
lung cancer, breast cancer, sarcoma) [3].

Recent work [20] further improved the classification accuracy by implement-
ing biological knowledge on the sequenced RNA molecules from the Kyoto Ency-
clopedia of Genes and Genomes [10]. Features obtained from an RNA-sequenced
platelet, were converted into images and classified by custom-built CNN archi-
tecture, resulting in a significant improvement. Their approach introduced two
main novelties:

1. using novel feature extraction step.
2. using the CNN-based model with a custom architecture for classification.

However, from the paper, it is unknown whether the improvements come from
the new feature extraction step, using a CNN-based model, or using custom
architecture. Therefore, we take a step-by-step approach in this work, starting
with the standard CNN architectures and detailed data analysis. To improve
CNN classification accuracy, standard techniques such as ImageNet pretraining,
Dropout [27] and mixup data augmentation [28] are applied.

Finally, other machine learning approaches such as k-nearest neighbors (kNN)
and gradient boosting [11] were applied, to compare their accuracies with a CNN-
based approach. To sum up, the contributions of this work are as follows:

– We performed an ablation study on the CNN-based classifier using different
architectures and regularization strategies to improve model accuracy.

– It was shown that the CNN models are not crucial to the final model perfor-
mance and similar accuracy can be obtained by using gradient tree boosting.
It has another advantage of adding interpretability to the model, which is
briefly analyzed in our work.

2 Method

2.1 Parameterization

Briefly, raw RNA-sequencing data encoded in FASTQfiles were subjected to a
standardized RNA-sequencing alignment pipeline, as described in Thromboseq
protocol [2]. The expression data for each sample were then normalized using
DESeq2 package [17] with Variance Stabilizing Transformation [14]. Gencode
v19 GRCh37 annotation [10] was used for annotation. Transcripts that could
not be mapped to a transcript with Gencode status ”known” were excluded.

Filtered expression profiles were then used to build images. Each row cor-
responds to a signaling pathway from the KEGG database [10]. Each pixel in
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a row corresponds to the expression level of a single transcript from the path-
way. Pathways from the KEGG database corresponding to three aspects: can-
cer, metabolism and signaling processes, were selected. R package gage was
used to gather KEGG pathway data [18]. As a result, a feature vector is a
two-dimensional array with 345 rows (number of signaling pathways) and 243
columns (length of the longest pathway).

In [20] such parameterized data is then directly fed into the CNN. However,
because each row contains a different number of values, more than half of the
values in the array are empty (filled with 0s). As such, we experiment with
another input variant where all values are put into a square of minimal size (by
simply removing empty values in the original arrays). Only the last few values in
the last row are empty. However, now each row may contain data from different
signaling pathways. It allowed us to reduce the size of the array to 143 rows by
143 columns and reduce input dimensionality from 83835 to 20449 values, which
could make the task easier for the classifier (especially given the limited data).
In the experiment section, this variant is named reduced.

2.2 Methods

In this section our methods for liquid biopsy data classification are described.
While CNNs were originally developed for computer vision, they were used

in a much larger set of applications, including analysis of EEG signals [5], calling
genetic variants [23], or text classification [7]. It is because CNNs are parameter-
efficient algorithms exploiting local feature patterns. However, for many appli-
cations labelled data are scarce, which makes the training very challenging. In
such a scenario it was shown that usually smaller architectures are already very
efficient [24]. In this work, standard CNN architecture, namely ResNet [12] is
used for liquid biopsy classification, and due to the small data regime, smaller
variants of the ResNet architecture are used. Additionally, it was tested whether
ImageNet pretraining helps in our scenario.

A standard approach to prevent model overfitting is to use some form of
data augmentation. While many forms of data augmentation exist for images
(e.g., rotations, translations, changes in color), none of the standard forms of
data augmentation can be applied to liquid biopsy data. As such, in this work a
data-agnostic mixup [28] augmentation routine is applied to the data. It creates
new data samples by means of linear interpolation between existing data:

x̃ = λxi + (1− λ)xj

ỹ = λyi + (1− λ)yj

where (xi, yi) and (xj , yj) are randomly selected training pairs of input vectors
and the corresponding label, and λ ∈ [0, 1] is the interpolating factor. In the
original paper λ is drawn from a symmetric Beta distribution and its α value is a
hyperparameter. Despite its simplicity, mixup is a powerful technique that works
as a strong regularizer on the model. Apart from mixup, other experiments were
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conducted using another regularization technique, namely Dropout [27], which
works by randomly zeroing output from some of the neurons during training.

Another popular machine learning technique is a gradient tree boosting [11],
which often performs very well on diverse applications such as ranking prob-
lems [4], recent COVID-19 patient deterioration prediction [25] and many others
[19]. A great advantage of gradient boosting algorithms is their interpretability,
especially important for medical applications. Additionally, a number of well-
maintained open-source libraries are available (e.g., XGBoost[6], LightGBM [16].
A popular XGBoost library is used for data processing in this work, and standard
hyperparameter search is applied over selected parameters.

Finally, a simple k-nearest neighbors classifier was applied to the problem.
While we do not expect it to perform better than previous methods, it is an
important baseline for comparing results to. It could be possible that the classi-
fication improvements in [20] were possible mainly due to the novel parameter-
ization, and in such a case even a simple k-nearest neighbors algorithm would
perform well.

3 Experiments

3.1 Evaluation

Table 1. Datasets used for experimentation.

Name train samples test samples imbalance ratio details
OC [20] 158 104 8.36 ovarian cancer
NSCLC [3] 157 447 1.96 non-small cell lung cancer
Sarcoma [13] 118 56 1.8 sarcoma

Three publicly available datasets were used to test the classifier (Table 1):
401 non-small cell lung cancer patients (NSCLC) and 203 healthy controls [3],
62 sarcoma and 37 former sarcoma patients who recovered at least 5 years ealier,
now treated as healthy) and 75 healthy controls [13] and the original imPlatelet
dataset consisting of 204 healthy controls and patients with ovarian cancer (28)
or benign gynaecological conditions (30) [20].

For evaluation, the same setting as in [20] was followed, i.e., the model is
evaluated on exactly the same held-out test set. Then, the rest of the data is
split into train and validation parts and a 5-fold stratified validation is run.

Balanced accuracy is used to measure performance, which is defined as:

Balanced accuracy = Sensitivity + Specificity
2

where sensitivity is the true positive rate and the specificity is the true negative
rate.
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3.2 CNN model

For the CNN approach, standard ResNet backbones are used for classification.
Since the amount of data is limited, we focused on smaller variants of the ResNet,
namely ResNet-18 and ResNet-34 from the PyTorch library [21] were tested.
First, a detailed study of the influence of different factors is performed on the
ovarian cancer dataset. To find the best model a grid search is executed, where
the learning rate is sampled from the range [0.01, 0.1], Dropout rate ∈ {0.2, 0.5}
and L1-weights regularization ∈ {0.001, 0.0001}. During training standard cross-
entropy classification loss it optimized. The model is being trained for 100 epochs
and the model for testing is chosen based on the balanced accuracy. As there
are still minor differences between the same runs, each experiment is repeated 3
times, and mean accuracy is reported.

In the first experiment, two parameterization approaches for the CNN model,
as described in section 2.1, were compared (Table 2). In general all models per-
form very well on the validation set (balanced accuracy ranging from 88% to
92%), and as expected, have a few percent accuracy drops on the test set. In
general, there is no clear winner for one specific architecture or data parame-
terization. Note, that the model with the highest validation accuracy obtain the
lowest score on the test set. For the next round of experiments, it was decided
to utilize the reduced parameterization, as it performs similarly to the original
parameterization, while using a much smaller input size.

Table 2. Accuracy of different backbones and parameterization on ovarian cancer
classification. Balanced accuracy reported.

Backbone Validation acc. Test acc.
Standard parameterization [20]
ResNet-18 0.9080 0.8958
ResNet-34 0.8793 0.8317
Reduced parameterization
ResNet-18 0.8938 0.8563
ResNet-34 0.9218 0.8255

Further, it was tested whether using ImageNet pretraining can improve the
final accuracy (Table 3). As it can be noticed, using ImageNet pretraining and
mixup improved the validation and testing accuracy. Also the variance in classi-
fication accuracy was reduced, which shows that using the above methods helped
to stabilize trained models. Balanced accuracy reported.

Finally, evaluation was performed on NSCLC and Sarcoma datasets. For the
NSCLC dataset the best model obtained a balanced accuracy of 86,52% on the
test set. The Sarcoma dataset turned out to be challenging, which might be
because of the limited dataset size. When doing standard 5-fold validation, it
turned out that the accuracy on the balanced dataset is poorly correlated with
the accuracy on the test set. As such, the models were trained for 100 epochs and
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Table 3. Effects of ImageNet pretraining and mixup data augmentation on the ovarian
cancer classification.

Model Validation. acc. Test. acc. Test std.
ResNet-18 0.8938 0.8563 0.0614
ResNet-34 0.9218 0.8255 0.0738
ImageNet pretraining
ResNet-18 0.9236 0.8952 0.0056
ResNet-34 0.9236 0.8652 0.0229
mixup
ResNet-18 0.9379 0.8798 0.0242
ResNet-34 0.9042 0.8221 0.0477
mixup + ImageNet pretraining
ResNet-18 0.9343 0.9043 0.0328
ResNet-34 0.9343 0.8782 0.0185

simply the model from the last epoch was used for testing. It was possible since
no signs of overfitting were noticed, which might be due to the used regularization
techniques, i.e., dropout. In such a setting, the Sarcoma balanced accuracy was
94,09%.

3.3 Other algorithms

In this section experiments with tree gradient boosting and kNN model are
presented. For the XGBoost model the following parameters were used in the
hyperparameter search: maximal depth of a tree ∈ {1, 2, 3, 4}, number of boost-
ing stages ∈ {50, 100, 300, 500} and learning rate ∈ {0.1, 0.01}, following insights
from [19].

In the case of kNN algorithm, given the large dimensionality of the input
space, first, a Principal Component Analysis (PCA) is performed using scikit
library [22]. Then the grid search for the kNN algorithm is applied, searching for
the number of neighbours (n ∈ {1, 2, 3}) and number of principal components
(explained variance in {0.6, 0.7, 0.8, 0.9, 0.95, 0.99, 0.999} . For evaluation, the
same procedure is applied as in the CNN model. Stratified 5-fold cross-validation
is used for model selection (PCA is separately computed for each fold), and
models with the best validation accuracy are used for testing (Table 4).

As expected the kNN algorithm is the worst performing algorithm. However,
on the OC dataset it reached 69.06% of balanced accuracy which is a fair result.
When comparing gradient boosting and CNN classifier, CNN scores similar on
the OC dataset and better on remaining datasets, and CNN accuracy is the most
stable across datasets. However, note that the CNN model is the only one that
used data augmentation, so it is very likely that gradient boosting would benefit
from it, especially on the Sarcoma dataset, on which the model is overfitting
(large difference between validation and test accurracy).
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Table 4. Accuracy comparison of different classification methods on all datasets. Bal-
anced accuracy reported.

Aggregation
method

Validation acc. Test acc.

OC
CNN 0.9343 0.9043
Boosting 1.0 0.8991
kNN 0.7556 0.6906
NSCLC
CNN 0.9129 0.8652
Boosting 0.76 0.7343
kNN 0.61 0.5299
Sarcoma
CNN 1.00 0.9409
Boosting 0.9818 0.6316
kNN 0.4522 0.3592

3.4 Discussion

In this work various machine learning approaches were evaluated on the task of
cancer patient classification using liquid biopsy. It was found that both standard
CNN-based models and gradient boosting algorithms perform very well. How-
ever, all of the models are sensitive to the hyperparameters. It is because of the
limited size of datasets and a high number of input features. At the same time,
it is expected that ensembling results from different models will further increase
and stabilize the performance.

Compared to the recent work [20] it was found that standard CNN backbones
(i.e. ResNet architecture) can perform very well on the task (as opposed to the
custom architecture). Further, it was shown that other models (i.e., gradient
boosting) could also perform very well on the task, given the novel parameter-
ization proposed in [20]. Our models performed better on the Sarcoma dataset
and worse on the OC dataset and NSCLC datasets. At the same time, the CNN
model used in our work is significantly smaller in terms of a number of parame-
ters.

Various regularization techniques were tested for the CNN model (Dropout,
mixup data augmentation, ImageNet pretraining, L1-weight regularization). At
the same time, there is no combination of methods and hyperparameters that
work the best on all datasets; in general, those methods allowed to improve and
stabilize the performance.

The importance of features was calculated using XGboost built-in function-
ality and depended on the number of splits a particular feature was involved
in. In the NSCLC dataset, RPL7A showed the highest importance. This gene
has been studied only in relation to osteosarcoma [29]. Four genes demonstrated
consistently high importance in the detection of ovarian cancer - SH3GL2 in-
volved in breast [15] and lung cancer [8], PRPF6, which is involved in tumor
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growth in colon cancer [1], HLA-DRA, which expression levels are known to
affect the prognosis of a number of malignancies [9] and UGT2B7, which muta-
tions are known to increase the risk of breast and colorectal cancer [26]. UGT2B7
has not been studied in relation to ovarian cancer and the research on PRFR6
and SH3GL2 has been minimal. Since the performance of gradient boosting on
sarcoma dataset was poor, no analysis of feature importance was performed.
The analysis of feature importance may provide additional targets for further
research on the biological background of studied cancers.

4 Conclusions

In this work an analysis of different machine learning approaches to patients
classification using liquid biopsy data, was presented. It was found out that given
the novel parameterization presented in [20], standard CNN-based models and
gradient boosting methods are very effective.. However, because of the limited
datasets size, and significant size of the input space, different regularization
techniques (such as dropout, mixup data augmentation) are crucial to the final
performance of the model and its stability.

Gradient boosting allowed us to add interpretability to the model. Using
data augmentation for the gradient boosting model to improve and stabilize its
performance is essential for future work. It will also allow us to perform a more
detailed analysis of the importance of the features returned by the model.
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