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Multimedia Systems Department

Gdansk University of Technology, ETI
Gdansk, Poland

s175505@student.pg.edu.pl

Abstract—To ensure proper authentication, e.g. in banking
systems, multimodal verification are becoming more prevelant.
An offline signature is a well known however not the safest way
to verify identity. In this paper the online signature analysis
based on dynamic time warping (DTW) coupled with neural
networks has been proposed. The goal of this resarch was to
test a hypothesis, that by using neural networks with DTW
improves the effectiveness of verification of a handwritten sig-
nature, comparing to a clasifier based on fixed thresholds. The
DTW algorithm was used as a feature extraction method and a
similarity measure. On top of dynamic time warping, as the
first and second model a multilayer perceptron (MLP) was
proposed. Thirdly a convolutional neural network (CNN) has
been developed.

A dataset has been created, containing model, verification and
forged signatures gathered from a research group using a biomet-
ric pen. Each individual signature consists of three dimensional
signals of accelerometer, gyroscope, inclinometer (both angle and
acceleration) and of pressure of the pen. An independent DTW
method has been conducted on the multidimensional signals. The
forged and verification signatures has been compared with model
ones. First MLP model used average and standard deviation of
distances between corresponding samples of compared signals
and the second one used the average and area under DTW curve.
The CNN model, had used the DTW matrix as an input. To
evaluate system efficiency the results has been compared with
DTW model based on constant thresholds. The research has
proved that the DTW coupled with neural networks perform
significantly better than the baseline method. The results are
presented and discussed in this paper.

Index Terms—dynamic time warping, handwritten signature
verification, feature-based recognition, neural networks

I. INTRODUCTION

In recent years, there has been an increasing need for secure
and reliable methods of authentication. Handwritten signatures
are a flawed and not reliable way of authenticating oneself,
as they can easily be forged. Due to the development of
technologies allowing the analysis of biological traits, which

are unique identifying characteristics, such as fingerprints or
a scan of a retina, there has been an increasing number of
biological based authentication services used throughout the
industry.

On-line signature authentication using a biometric pen al-
lows for a less vulnerable to fraud way of analysing signatures,
by dynamically collecting samples from various sensors during
the signature process, such as pen pressure and acceleration,
which can later be used to measure similarities of a model
signature and currently examined one.

One such method is the use of Dynamic Time Warping
(DTW), which is an algorithm used to measure simmilarities
between two signals that can be of different lengths. More
detailed descripion of this method is included in a later part
of this paper. Previous research has proposed a verification
method based on fixed DTW thresholds determined experi-
mentally on a training set [1]. Our goal was to test a hy-
pothesis, that using neural networks to verify the authenticity
of a handwritten signature, parameterized using the Dynamic
Time Warping method (DTW), improves the effectiveness of
verification compared to a classifier based on fixed thresholds.

In this research article, we propose a method for verifying
the authenticity of a biometric signature using a combination
of dynamic time warping (DTW) and neural networks. The
DTW method is used to compare the similarity of two biomet-
ric signatures and parametrize them, while the neural network
is trained to classify the signatures as belonging to a person
trying to authenticate themselves or a forgery attempt based
on the DTW similarity score. We also perform a statistical
analysis of the models performance to check if there is a
statistical difference between them.



II. RELATED WORKS

A Systematic Literature Review (SLR) has been conducted,
which revealed a research gap in the topic of the combination
of neural networks and DTW. The research of the related
works showed a wide range of different approaches used
recently to solve the online signature verification problem.
However, the solution proposed in this article - combining
DTW algorithm with neural networks turned out to be less
common than it was presumed. Only about 20% of all methods
used in this field used a combination of DTW and Machine
Learning (ML) algorithms. The most popular ML techniques
involved Support Vector Machine and Recurrent Neural Net-
works, but Feed-forward Neural Networks were also among
the most explored ways of dealing with the authentication
problem.

During the SLR process it has been discovered that over
46% of the articles found used only the DTW method for
signature verification. It was expected that many would use
this method, because it was widely used in a simmilar field -
word recognition in the late 1970’s [2] and early 1980’s [3].
Despite that one of the first usage of a DTW method for curve
matching and signature verification was presented in 1999 [4].

A threshold based DTW signature identification method
using signature envelope was presented in [5]. The scheme
used basic features such as X, Y coordinates of given signature
and was tested on a Japanese handwritten signature dataset.
In this approach, the authors developed personalized models,
that created a decision boundary based on the maximum and
minimum variations of the X and Y signals after DTW method
was applied. Although the approach was not complicated
it managed to outperform previously proposed approaches
by achieving an accuracy score of almost 80% and a False
Acceptance Rate (FAR) and False Rejection Rate (FRR) scores
of 27.35% and 15.18% respectively.

A method that used the whole DTW matrix in combination
with the DTW scores derived from comparing two signatures
was proposed in [6]. Until the work of Sharma et. al. prior
works utilized only the DTW scores to authenticate a test
signature. It has been shown in this paper, that using the fusion
of the DTW score and the whole DTW matrix can improve
the performance of given model.

Different feature extraction methods have been used in
combination with neural networks. A discrete wavelet trans-
form (DWT) was one of the successful ones [7]. From the
X and Y coordinates, the features of pen movement angles
were calculated. Afterwards every signal was independently
transformed by the DWT and combined in a signature feature
vector, which was then either matched or rejected, by a neural
network. It has been shown, that using the DWT with neural
networks can lead to 90% success rate, which shows that such
combinations can be a very powerful tool.

The concept of connecting DTW with neural networks was
proposed among others in [8]. A Deep Dynamic Time Warping
has been introduced, by combining a Siamese Network that
extracts a feature sequence from each of the signature signals

and a DTW block that aligns the sequences of two inputs.
It has been shown that such approach can achieve lower Equal
Error Rate (EER) than using only DTW or only a Siamese
network.

As an improvement of the previous work the authors took
advantage of features that DTW extracts and added Siamese
Network to it [9]. The Siamese network was incorporated
directly into the DTW algorithm, leading to a novel method
called Prewarping Siamese Network. The optimization was
done using a local embedding loss. For training of this model
four datasets were used: MCYT-100 [10], BiosecurID SONOF
[11], and SUSIG vi-sual and blind sub-corpuses [12]. This
novel approach resulted in the EER value at around 2.11%.

In [13] the authors decided to fuse the scores of 3 classifiers
- Deep BiLSTM, SVM with DTW and SVM with different
comparator, proposed in the paper. The signature was recog-
nized as genuine when the sum of the scores of 3 classifiers
for genuine signature was higher than for forged. Whereas
the separated scores of those classifiers were rather weak, the
fusion of them results in EER lower than 1% on both SVC2004
[14] and MCYT-100 datasets.

Around 43% of the articles found during the SLR process
did not include DTW at all. One of such approaches was a
method described in [15]. The authors were inspired by the
latest progress on Recurrent Neural Networks (RNN) and tried
to implement it into the problem of signature authentication.
However, there are many drawbacks when it comes to using
RNN. It requires a relatively large training set and significant
amount of computational power. On the other hand the results
are promising, getting EER at around 2.37% on SVC-2004
dataset.

Another approach that involved RNN was [16]. Authors
tried to combine RNN with a Siamese architecture trained on
the BiosecurID dataset. Different training scenarios of authen-
tication problem were considered: skilled forgeries, random
forgeries and combination of skilled plus random forgeries.
The results were as follows: 5.50% EER for skilled forgeries
and 3.00% for random forgeries.

III. DYNAMIC TIME WARPING

For the purpose of comparing two signatures made using a
biometric pen it was necessary to use an algorithm that could
recognize them as belonging to the same person even if they
varied in length. It could have been the case of signing with
a different speed and size of font.

Dynamic Time Warping (DTW) compares two signals
which may be of different lengths - it seeks for the temporal
alignment that minimizes a certain distance metric between
aligned series. A temporal alignment is a matching between
time indexes of the two signals. The algorithm tries to
find the best match between samples with regards to their
surroundings. The result of running a DTW algorithm is a
matrix with minimal alignment costs between samples. In
this matrix an optimal path can be created by following the
minimal costs of the surrounding samples starting from the
comparison of the last sample pair up to the first pair. In



an ideal situation a path created by comparing two signals
would be a diagonal of the matrix, meaning that the signals
are perfectly matching. The path divergence from the diagonal
with its costs is distinctive for a given case and because of that
it can be used to differentiate between a forgery attempt and
authentic signature. The DTW algorithm formula is described
below.

Let’s assume two signatures F and G:

F = f1, f2, f3, ..., fn (1)

G = g1, g2, g3, ..., gm (2)

The distance between them can be described as follows:

d(fi, gj) = |fi − gj | (3)

The cells in matrix are computed as a cost function:

γi,j = d(fi, gj) +min(γi−1,j−1; γi−1,j ; γi,j−1) (4)

The matrix as a whole can be used as a representation of
the comparison between two signals, however it is possible to
get similar information from a more compact way, by trying
to find the path which represents the optimal cost path in a
matrix. To get the path the first thing is to find the last element
in matrix and move back to the first element using equations
below:

w
′
= {wk, wk−1, ..., w(0)} max(m;n) < m+n+1 (5)

w
′

l =


(i− 1, j − 1) γi+1,j+1 = min(γi−1,j−1; γi−1,j ; γi,j−1)

(i− 1, j) γi+1,j = min(γi−1,j−1; γi−1,j ; γi,j−1)

(i, j − 1) γi,j+1 = min(γi−1,j−1; γi−1,j ; γi,j−1)
(6)

One of the methods to find out if both signatures are similar,
proposed in previous research [1] uses the comparison of the
result from DTW algorithm ps

′ with given threshold pTHR.
Thanks to this measurement it is possible to get a degree of
similarity in range 0 to 1. It may be done using the equation
below:

p =

{
1 p

′

s < pTHR
pTHR

p′
s

p
′

s > pTHR
(7)

IV. DATASET

The first part of our research was to collect proper data.
To do so, 33 people were gathered. The participants were 16-
30 years old, representing both genders and right and left-
handed writers. In the process of gathering data the study
group was divided into smaller subsets of 2 to 5 people. Each
person from the sub-group signed 5 model and 5 verification
signatures. Then, every other member of the same sub-group
tried to forge the person signature 5 times, firstly just after
they saw the model signature (random forgery) and secondly
after practicing singing for someone else (skilled forgery).

Each such signature consists of 13 different signals which
are:

• Accelerometer, with acceleration measured in all three
dimensions

• Gyroscope (three dimensions)
• Pressure of the pen
• Inclinometer, measuring both angle and acceleration in

three dimensions
Signals of position in time have been neglected due to the
ethical concerns and noisy data. Moreover, some signatures
were removed and not used in the dataset due to biometric
pen defect that pause recording signals in the middle of
signature. Finally the data consist of 322 model signatures,
328 verification signatures and 537 forged signatures.

A. Data processing

Each verification and forged signature was compared to
corresponding model signature using DTW method. For such
pairs of signatures fastdtw library [17] was used to calculate
accumulated distance and DTW path. We decided to use the
independent DTW algorithim [18], therefore calculations were
made for each of 13 signals separately.

Instead of calculating the whole matrix at once the fastdtw
library uses the divide and conquer method to make approx-
imation about the DTW matrix and then goes into details in
the smaller parts. This implementation of DTW method was
compared to one made by authors and another from dtw library
[19]. It proved to be the fastest of them in terms of time of
execution, while producing fairly accurate results.

Based on the samples of the DTW path we calculated dis-
tances between model and compared signal samples creating a
new feature used in the dataset called pairwise cost. Therefore
the basic dataset consists of accumulated DTW distance, DTW
path and pairwise cost for every signal in every model and
compared signature pair. All of the features were saved to the
.json files.

From that data a labeled dataset has been created. The
processed output of DTW method made from verification and
model signatures were labeled as 1 whereas output from forged
and model as 0. Subsequently the training set contains 1071
elements of class 0 and 640 elements of class 1.

B. Test set

For each individual one randomly selected verification sig-
nature was set aside into test set. Then we generated DTW
output of that verification signature combined with every of
5 model individual’s signature. Finally, there were five true
samples in the test set for each of the 33 test subjects.

The number of falsified samples depended on the type of
forgery carried out for the individual. For each person, there
was at least one forger (test groups ranged from two to four
people) who performed five random forgery attempts, or five
random forgeries and five skilled forgery attempts. Therefore,
in the test set for some examinees there are five samples of
forgeries, and for some there are ten. In the end, the test set
contains 383 samples, 223 of class 0 and 160 of class 1.



C. MLP models datasets

Using the pairwise cost data the dataset for MLP models has
been created. For the first MLP model, average and standard
deviation of pairwise cost have been calculated, whereas the
average of pairwise cost and the averaged area under the DTW
path has been used in the second one.

D. CNN model dataset

The input of the CNN model is the DTW cost matrix
calculated between corresponding sensors from model signa-
tures. All the matrices has been resized to the their average
size in dataset. Resizing was necessary due to fixed size
of model input to standarize DTW matrices, which were of
various sizes, depending on length of signals gathered. We
have decided to use linear interpolation to upscale an image
or area interpolation to downscale an image. In order to input
this to model all matrices are merged into tensor of size
13x270x300.

V. MODELS

When creating and training the models the main concern
was relative small size of the dataset. Resulting, architectures
were rather shallow and simple to train properly and achieve
satisfactory results. In total three models were created: two
MLP models with different datasets and a CNN model.

A. MLP models

The first model architecture was based on Multilayer Per-
ceptron (MLP). It consisted of two hidden layers: 64 and 32
neurons respectively with the addition of dropout with prob-
ability 30% to prevent overfitting. As an activation function
ReLU function was chosen. Model was trained for 100 epochs
using Binary Cross Entropy as a loss function and batch size
of 64. For optimization ADAM was chosen with the following
parameters:

lr = 0.001, β1 = 0.9, β2 = 0.999, ϵ = 1 ∗ 10−7

The training process was stopped earlier when in 10 last
epochs loss haven’t improved. This architecture was trained
with two different datasets resulting in two distinct models.
When it comes to the first model, dataset with mean and
standard deviation of optimal path in DTW matrix, for the
second the mean and area under optimal path.

B. CNN model

The second developed model architecture was based on
Convolutional Neural Networks. The idea was to treat cost
matrices produced by DTW as images and input them to the
network to predict if given signature is forged or not. Con-
volutional stage of the model consists of three convolutional
layers with 2 dimensional filters in number 16, 32, 64. For
all of them padding was set to same, kernel size 3x3 and
activation function was ReLU. After each convolutional layer
were pooling layer, performing max pooling operation in 2
dimensions with window size 2x2 and padding same. Next
stage is consisting of 2 dense layers with sizes 128 and 32.

For both of them ReLU was used as an activation function and
dropout with probability 20%. The training was performed for
100 epochs with a loss function Binary Cross Entropy. Batch
size was 32 and the optimizer was chosen to be ADAM with
parameters :

lr = 0.001, β1 = 0.9, β2 = 0.999, ϵ = 1 ∗ 10−7

During training early stopping was used after 10 epochs
without improvement in loss value.

VI. EXPERIMENTS AND STATISTICAL ANALYSIS

Given the biometric nature of the solutions proposed in
this and prior works [1], and their potential applications in
industries such as banking, more informative metrics were
elected. Specifically, we evaluated the False Acceptance Rate
(FAR), defined as the ratio of the number of forged signatures
accepted by the system to the total number of forgeries, and
the False Rejection Rate (FRR), defined as the ratio of the
number of authentic signatures rejected by the system to the
total number of authentic signatures.

Ideally, both of these metrics would be equal to zero, but
they are dependent on one another - as one metric’s value gets
lower the second’s tends to get higher. During the evaluation
of the results, we have given more attention to the FAR metric,
as in our opinion, it carries more weight in applications such
as the banking industry, where the goal is to minimize the
ratio of forgeries accepted by the system, even at the expense
of a higher number of incorrectly rejected authentic samples.

A. Model evaluation and comparison

The proposed models have been implemented and evaluated
on a test set described in paragraph IV-B. The results of the
evaluation, along with the specified metrics, are shown in
table I.

TABLE I
METRICS FOR THE MODELS

constant CNN MLP MLP
threshold (avg,std) (area)

FAR 25.07% 1.57% 6.01% 4.96%
FRR 18.80% 13.58% 27.15% 24.54%

The results of the evaluation indicate that each of the models
proposed in this study significantly outperforms the model
based on fixed thresholds in terms of the False Acceptance
Rate (FAR) metric. It is noteworthy that the convolutional
model, achieves the lowest FAR value of1.57%. This repre-
sents a notable improvement compared to the baseline model.
On the other hand, the Multilayer Perceptron (MLP) models,
while achieving lower FAR values, exhibit higher False Re-
jection Rate (FRR) values, which is an undesirable behavior.

In addition to evaluation on the whole test set, the perfor-
mance of the proposed models was assessed on only random
forgery samples and only skilled forgery samples, contained
in the test set. The results of this comparison are presented in
table II:



TABLE II
FAR VALUES FOR RANDOM AND SKILLED FORGERIES

constant CNN MLP MLP
threshold (avg,std) (area)

Random forgeries 20.00% 0.00% 0.83% 0.83%
Skilled forgeries 29.17% 1.67% 8.33% 4.17%

The assesment results of FAR values indicate that all pro-
posed models outperform the baseline significantly. For ran-
dom forgeries all FAR values are below 1%, which indicates
that all models are secure, reliable and resilient to a forger,
who has only seen given signature for a brief moment. As for
the skilled forgeries the proposed models still outperform the
baseline, but a greater variation can be observed. A noteworthy
result is that of a CNN model which FAR value is below 2%
even for skilled forgeries.

B. Statistical analysis of the results

To evaluate the statistical significance of the results of this
study, the Cochran’s Q test was employed. This non-parametric
statistical test is used to determine whether k treatments have
identical effects [20]. In this case, the treatments were the
performance of the proposed models.

The following null and alternative hypotheses were used:

• null hypothesis (H0) : The performance of all the models
is equally effective - the proportion of correct predictions
is the same between all models.

• alternative hypothesis (H1) : There is a difference in
performance between the models - the proportion of
correct predictions in at least one of the models is
different.

The Cochran’s Q test statistic has been calculated as:

T = k(k − 1)

∑k
j=1(X•j − N

k )
2∑b

i=1 Xi•(k −Xi•)
(8)

where: k is the number of models, X•j is the column total
for the jth model, b is the number of test samples, Xi•) is
the row total for the ith sample, N is the grand total. The
test statistic T follows a χ2 distribution with k− 1 degrees of
freedom.In the case of this study k = 4, so the distribution has
3 degrees of freedom. If the p-value associated with the test
statistic is less than a certain significance level (for the purpose
of this comparison α = 0.05 has been chosen), the null
hypothesis can be rejected and it can be concluded that there is
sufficient evidence to say the proportion of correct predictions
is different for at least one of the models. Cochran’s Q test
statistic and p-value has been calculated and presented in table
III.

TABLE III
COCHRAN’S Q TEST RESULTS

χ2 88.32
p-value 5.03 ∗ 10−19

There is sufficient evidence to reject the null hypothesis and
conclude that there is a difference in performance between the
models.

Furthermore, the McNemar test has also been conducted,
to examine the statistical significance of differences between
pairs of models. The McNemar test is a well-known statistical
test for analyzing the statistical significance of differences
in classifier performance [21]. This test is also a χ2 test
for goodness of fit that compares the distribution of counts
expected under the null hypothesis with the observed counts.
The following null and alternative hypotheses were used:

• null hypothesis (H0) : The performance of the two
analysed models is equally effective - the proportion of
correct predictions is the same.

• alternative hypothesis (H1) : There is a difference in
performance between the models - the proportion of
correct predictions is different.

The McNemmar’s test statistic has been calculated as:

χ2 =
(b− c)2

b+ c
(9)

where: b is the number of times that the second model has
predicted wrongly and the first has predicted correctly and c is
the number of times that the first model has predicted wrongly
and the second has predicted correctly.

In the same way as in the Cochran’s Q test, if the p-
value associated with the test statistic is less than a certain
significance level (for the purpose of this comparison α = 0.05
has been chosen), the null hypothesis can be rejected and it
can be concluded that there is sufficient evidence to say the
proportion of correct predictions is different for the models.

The McNemar test statistic (χ2) and p-value have been
calculated and the results are presented in table IV.

TABLE IV
MCNEMMAR’S TESTS VERSUS BASELINE

vs. CNN vs. MLP vs. MLP
(avg,std) (area)

χ2 69.54 8.28 15.67
p-value 7.48 ∗ 10−17 4 ∗ 10−3 7.52 ∗ 10−5

There is sufficient evidence to reject the null hypothesis for
the comparison between the baseline model and the models
proposed in this paper. It can be concluded that there is a
difference in performance between the models.

TABLE V
MCNEMMAR’S TESTS WITHIN MODELS

CNN vs. MLP CNN vs. MLP MLP vs. MLP
(avg,std) (area) (area) vs (avg,std)

χ2 44.50 30.56 2.97
p-value 2.54 ∗ 10−11 3.24−8 0.08

As can be seen in the table V, the only pair of models
for which the null hypothesis can not be rejected is the pair
of MLP models, so it cannot be concluded with sufficient
confidence, that there is a difference between the performance
of these models.



VII. CONCLUSION

Combination of neural networks with DTW algorithm can
be effective in biometric signature verification and significantly
outperforms model build with fixed thresholds. Statistic tests
showed significant differences between proposed models and
the one based on fixed thresholds. It is worth noting, that
there is no statistically significant difference between two
approaches to MLP model, yet area MLP was slightly better
in performance. From three developed models the CNN model
displayed the highest accuracy as well as low FAR which is
crucial in authentication systems. An increase in performance
will require significantly more data to train the model, which
will result in better generalization and more robust model.
Further works could additionally include gathering better
trained forgeries and training the models with them to increase
the security level.
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