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Abstract: To this day, driver fatigue remains one of the most
significant causes of road accidents. Despite technological
advancements, the automotive industry still lacks a clear solution
to mitigate or even detect drowsiness. Many approaches have
been tried and tested, but none have been widely adapted. In this
paper, a novel way of detecting and monitoring a driver's
physical state has been proposed. The goal of the system was to
make use of multimodal imaging from RGB and thermal
cameras working simultaneously to monitor the driver's current
condition in real time. Based on chosen and further implemented
machine learning algorithms, the system would actively notify
the driver in cases of fatigue detection. In order to create such a
system, the necessary video data was required. Multiple
open-source datasets were taken into consideration, but in order
to have full control over the type and nature of data, a simulated
driving environment was prepared and used for the simultaneous
acquisition of thermal and RGB video samples. Acquired data
was further processed and used for the extraction of necessary
metrics pertaining to the state of the eyes and mouth, such as the
eye aspect ratio (EAR) and mouth aspect ratio (MAR),
respectively. Breath characteristics were also measured. The
created data vectors were used in later stages of the project for
model training and testing. A customized residual neural
network was chosen as the final prediction model for the entire
system. The results achieved by the proposed model validate the
chosen approach to fatigue detection by achieving an average
accuracy of 85% on evaluation data.
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I. INTRODUCTION

The National Highway Traffic Safety Administration reports
that approximately 91,000 accidents are caused by drowsy
driving every year. Approximately 50,000 people are injured
and 800 are killed as a result of these accidents [1]. Since
many of these accidents are not reported, and even if they are,
it is sometimes difficult to determine whether a driver was
drowsy at the time, the number of car accidents caused by
drowsy driving is likely grossly underestimated. According to
the European Commission, 10 to 25 percent of all accidents
were due to driver fatigue [2].

As a result, a growing number of companies are implementing
driver-state monitoring systems as a safety measure. This
number will increase annually as a result of laws and
regulations mandating the installation of this system in every
new automobile. Due to this, driver fatigue detection has
become a topic of great interest in the scientific community.

The existing solutions can be broken down into three
categories: monitoring the status of the equipment in the
controlled vehicle; measuring the physiological parameters of
the driver; and monitoring the behavior of the driver. Systems
belonging to the first category are those that utilize
vehicle-specific data. This includes the movements of the
steering wheel, the measurements of lane departure, and the
patterns of braking. This system is non-intrusive, but its
effectiveness is contingent on road conditions and driver skill.
Systems that measure physiological responses are the most
invasive and distracting for the driver because they require the
driver to wear measuring devices like an
electroencephalogram or an electrocardiograph. The mere act
of wearing such devices can skew the system's results. The
final category is concerned with observing and measuring the
driver's behavior using computer vision methods. This type of
system is frequently more dependable than its predecessors
and is as non-intrusive as the system that monitors the
vehicle's equipment. [3]

In this paper, we present a system that simultaneously uses
video data captured by thermal and RGB cameras to
determine the state of the driver. This multimodal approach
enables the extraction of driver-specific features that would
otherwise be lost when monitoring the vehicle's state. We have
conducted a data acquisition process via the simulator that we
designed, resulting in our own unique dataset.

II. STATE OF KNOWLEDGE

To initiate implementation of a solution for driver fatigue
detection, a systematic literature review was conducted. A
person's drowsy state is a fairly abstract concept, as each
individual experiences it differently, so we wanted to



determine how other researchers have approached it and what
the state-of-the-art solutions were. Each of the four authors
contributed to the annotation and analysis of this paper. The
relevant papers were gathered using three literature databases:
IEEExplore, Scopus, and Springer. As a result, we collected
296 papers published between 2017 and 2022, which were
then reduced by removing duplicates and excluding papers
without a DOI identifier.

Then, each paper was given a score based on how pertinent
the title appeared to be to our study, and only the articles that
received the highest score from all of the annotators were
included in the abstract relevance tagging. At this stage, we
have disregarded any papers that did not use RGB or thermal
video data to classify the driver's state. Following abstract
relevance tagging in the same manner as title tagging, only 32
articles with a perfect score that were not literature reviews
were considered for full text analysis.

A. Environment

The first piece of information essential for further
development was the context in which the data were collected.
We were able to extract information about the type of
environment from 28 of the 32 articles. Three types of
environments were identified: real, simulated, and regular.

Real-life settings are videos in which a driver is captured
driving a vehicle. This type of environment is challenging
because it can cause a driver to become distracted and cause
dangerous situations on the road; as a result, they were only
used in five of the discovered papers. However, models
trained using such data samples may be the most trustworthy,
as they directly correspond to the system's target environment.

A second type of environment was a simulated one in which
data was collected using a car driving simulator. This method
eliminates the potential dangers associated with actual driver
video recording. A simulated environment can replicate
real-world scenarios quite accurately, but requires additional
devices and software. This configuration was utilized in eight
of the 32 articles.

Researchers employed the final category the most frequently.
They utilized videos depicting people in everyday settings that
were unrelated to driving a car. Typically, they portrayed a
person in front of the camera who was either drowsy or
awake. This strategy appeared in 19 of 32 papers. This enables
the simplest data acquisition, but it may lead to inconsistency
in the final system's decisions.

B. Datasets

There were twelve distinct datasets found among the collected
articles, and fifteen articles implemented their solutions using
their own unique datasets.

Only three of the discovered datasets were directly associated
with driver drowsiness detection. The Driver Drowsiness
Detection Dataset collected by the NTHU Computer Vision

Lab in a simulated environment was the most popular dataset
[4]. The dataset was utilized eight times. Another dataset that
was utilized twice was INVEDRIFAC, which contained driver
data recorded while driving a vehicle. The final dataset
(UTA-RDD) was only utilized once. This dataset includes
videos of participants in their everyday environments.

Other datasets were utilized for the system's intermediate
components, such as face detection, eye state detection, and
yawn detection. There were four separate face detection
dataset: WIDER FACE (used 3 times), MTFL (used 1 time),
FER2013 (used 1 time), and Celeba (used 1 time). For eye
state detection, five datasets were utilized: CEW (used 3
times), MRL (used 2 times), ZJU (used 1 time), and two
datasets downloaded from Kaggle. The final 2 datasets used
for yawn detection were YawnDD and one of the previously
mentioned Kaggle datasets.

C. Features

There were only six distinct characteristics identified across
the 32 articles. The majority of the discovered articles took a
similar approach to selecting features for drowsiness
detection, focusing on eye and mouth state detection (27 and
19 times, respectively). Additionally, six articles identified
head bending or nodding as a sign of fatigue. Three other
features were used only once each: eyebrow furrowing,
measuring face temperature, and facial muscle movement
speed.

D. Machine learning algorithms
Fourteen algorithms used in the implementation of driver
drowsiness detection systems have been identified among the
articles analyzed. In the vast majority of solutions (23
articles), Convolutional Neural Networks were utilized for
either feature extraction or decision-making. Seven papers
utilized VGG architectures. Most prominent were VGG16 for
the final classification of the driver’s state and VGG-FaceNet
for facial feature extraction. Support Vector Machines (SVM)
were the third most frequently used model for both tasks and
were implemented five times. Three times out of four, SVM
was combined with the histogram of oriented gradients
(HOG). The Long Short-Term Memory model was utilized
four times to estimate driver drowsiness. General Deep
Neural Networks (DNN) were the last algorithm to be used
multiple times; they were employed twice. This algorithm was
implemented once for feature extraction and classification and
once solely for driver state classification.

Each of the remaining algorithms was only utilized once.
Recurrent Neural Network, K-Nearest Neighbors, Bayesian
classifier, Fisher's Linear Discriminant Analysis, Random
Forest, and Long-term Recurrent Convolutional Network were
applied for driver state classification. The Viola Jones method
was used for face detection and extraction of the eye region.
Adaboost was implemented for both the improvement of the
face detection model and the final classifier.



III. METHODOLOGY

A. Simulator
Purpose of reliable acquisition of needed video data required a
controlled driving environment. Due to safety and practicality
reasons, the simulator was set up in a laboratory environment.
The main components of the prepared system included a PC
running the simulation as well as thermal and RGB cameras
on separate stands, both of which were connected to the
Google Coral computer.

Volunteers made use of commercially available steering
wheels and gas and brake pedals to control simulated vehicles.
The simulation was placed inside a city environment and did
not include any particular goal. Participants were instructed to
drive aimlessly through the city streets. Settings for the
simulations were pre-set by our research team. Specific crowd
density and weather conditions were chosen to provide a
stress-free scenario that could induce drowsy behavior.

Recordings of participants were taken with aforementioned
RGB and Thermal cameras with the use of Google Coral.
Both cameras and the Coral device were placed inside
3D-printed cases tailored specifically to those devices.
Separate cases were printed for Coral, which had a directly
connected RGB camera, and for the Lepton Purethermal Mini
Module, which was connected using a USB interface. Using
openCV, our team managed to take recordings from both
cameras simultaneously in a specified loop for a given
session. Recordings were offloaded after recording to the
researcher's laptop, which was connected to the Google Coral
throughout the given session for control and monitoring
purposes.

In order to get a clear view of the drivers' faces, a whiteboard
was placed behind them in a position that completely covered
the background of the person's head and upper torso. The
RGB camera was recording from a top-down view, which
ensured proper capture of facial features, while the thermal
camera was recording from the level of the steering wheel.
Placing the thermal camera in such a way allowed for the
capture of the nostrils of participants, which made it possible
to analyze breath metrics.

The use of commercially available hardware and open-source
software allowed for easy setup of the environment and
provided a safe and fully controllable source of data.
Recording sessions with the use of the simulator were
conducted under the guidance of at least one member of our
research team.

Fig. 1 Simulator

B. Acquisition procedure

It was essential to optimize the process of acquiring thermal
and RGB recordings. As was already discussed in the previous
section, it was decided that at least one member of the team be
present during recording sessions, so the procedure also
needed to be adjusted in such a way that a single person had
complete control over every part of the procedure. A custom
bash and python script were prepared in order to automate
recording with our cameras. Through the use of these scripts,
we were able to create a setup where recordings would be
taken one after the other without any additional input. A team
member only needed to specify the ID assigned to a specific
person, and recordings would be taken one after the other.
Having tested the validity of such a solution, it was decided
that recording sessions could begin.

The procedure for each volunteer was the same. Participants
would first arrive at the laboratory with a simulator installed.
A team member would explain the process and ask them to
sign the required agreement before taking part in the project.
Following the signing, a team member would conduct a short
survey to determine if the person was currently feeling any
kind of fatigue or if they had drank any caffeine earlier in the
day.

After that, a given person had up to 10 minutes to get familiar
with the setup and steering of the simulator while the present
team member prepared to start recording. When the



participant confirmed that they were ready to start, a team
member would fasten the Respiration Monitor Belt, which
was used to gather data about breath frequency that would be
used as reference for later stages of the project. Once it was
done, the participant would start driving in a preset
environment, and a team member would start the recordings.

An exit survey was conducted after recordings were
completed, and a team member confirmed that the system
worked properly through the file inspection. In this form,
participants were asked if they felt any fatigue during the
procedure. Besides that, the form included questions based on
the user's sentiment towards the proposed system. Such a
procedure would be repeated for every volunteer. Recordings
were taken at different times of the day in an indoor setting
with mainly artificial lighting.

C. Dataset

As a result of conducting recording sessions, our team
managed to acquire over 200 RGB and thermal recordings
from nearly 20 different volunteers. The volunteers’ age group
varied, but most of them were students aged between 20 and
25 years. Each recording is placed in a directory named after a
specific participant’s ID number. Recordings are further
divided into two subdirectories. One for RGB videos and one
for thermal. Each recording in the series includes a specific ID
of a given participant with an additional number including the
recording's order in the series. Having structured our dataset in
such a way allows for easy access to the necessary data.

Every single recording was annotated based on participant
responses to the surveys mentioned in the previous section. A
CSV file with labels for every recording is placed in the main
directory. Label 1 means that the person on a given recording
is fatigued, while label 0 denotes the opposite. Other than
labels for entire recordings, our team also annotated RGB
videos frame by frame. These annotations included
information on when a given person was yawning, had an
open mouth, tilted their head, or blinked. Having both types of
annotations allowed for much more detailed analysis in the
next stages of the project and was a solid reference for further
data processing and analysis.

IV. PROPOSED SYSTEM

A. System architecture

Our system is based around the simultaneous recording of the
driver with two camera modules, then processing the acquired
recordings in the context of specific metrics and their further
use, after being appropriately processed, in a recurrent neural
network to arrive at the verdict.

Fig. 2 Proposed system architecture

The presented architecture is the representation of workflow
in the final version system, with the goal of being able to
operate and arrive at a verdict in real time. For the purposes of
the research, each stage of the system was implemented and
tested separately. Choosing such an approach allowed for
better control of the development phase and made it possible
to conduct specific experiments to validate the approach
chosen for a specific part of the system. The presented
architecture includes everything from the driver and their
vehicle to the cameras connected to the computer, which
processes the data and notifies the driver through chosen
means if fatigue is detected. Specific parts of the architecture,
their details, and how they contribute to the whole system
have been described in the further sections of this article.

B. RGB pipeline

The eye state and mouth state, which are two of the most
crucial features for assessing a driver's condition, are
determined using RGB videos.

The first step in RGB video processing is the detection of the
face and its characteristic points in every frame of recording.
It was done with the usage of dlib library which provides
facial landmarks detector with pre-trained models and is
capable of estimating the location of 68 coordinates (x, y) that
map the facial points on a person’s face.

Fig. 3 Facial landmarks
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In order to determine the mouth state of the driver, six of the
detected points are used to calculate a measure called the
Mouth Aspect Ratio (MAR). It is defined by the mean of three
distances between points from the upper and lower lips to
identify how widely the mouth is opened.

For the purpose of eye state evaluation, two approaches are
used. The first of them is based on the same concept as mouth
state determination. Therefore, in order to assess the degree of
eye closure, twelve facial points are used (six for each eye) to
calculate Eye Aspect Ratio (EAR).
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A second approach is used to classify eyes as open or closed.
The classifier is based on a convolutional neural network with
VGG16 architecture. The model is initialized with the weights
of the VGGFace model and further trained with the Closed
Eyes in the  Wild (CEW) dataset.

C. Thermal pipeline

The respiratory rate plays an important role in determining the
driver's state. It is determined using data extracted from
thermal imaging.

The first step of data processing is histogram equalization. It
equalizes the distribution of intensities for a given range of
values. In the case of images, it essentially improves the
contrast. Due to the low resolution of thermal imaging, the
face features may not be clearly visible. This step helps
highlight those features. To obtain the desired facial region, a
simple face detection method with Haar cascades was
employed. Once the region of interest was obtained, the mean
value of pixels for each frame was calculated. The resulting
values can then be treated as a signal representing the average
pixel value over time. During respiration, the pixels around
the nose and mouth area should change values due to the
difference in temperature.

The final steps aim at reducing the noise and filtering the
signal to obtain a waveform used for respiration rate
prediction. First, the signal is smoothed out using the
asymmetric least squares smoothing algorithm with 𝛌 = 10
and p = 0.1. Finally, the resulting signal is filtered using a
digital Butterworth filter with critical frequencies of 0.046 and
0.23.

D. Final discriminator

The final decision model was based on RNN to which video
segments were fed. Each video was separated into
10-second-long windows. This window was then shifted by
one second's worth of frames, resulting in twenty windows per
video. Then, for each window extracted from a video, five
features were calculated using the metrics described in earlier
sections. These characteristics included mean EAR,
percentage of frames with closed eyes, mean MAR, maximum
MAR, and mean breath length.

The final discriminator comprises a single GRU unit and two
linear layers. The model outputs a single value in the range
(0, 1), which indicates the confidence that the driver is in a
drowsy state. A decision was made based on a chosen
threshold of 0.5. If the confidence was above the threshold,
that would indicate that the driver was drowsy.

V. ACHIEVED RESULTS

A. Eye state detection
From the calculated EAR metrics for both eyes separately, the
mean was taken in order to estimate the average state of both
eyes at a time. In Figure 5 we can see exemplary frames from
our dataset with mean EAR calculated.
The trained VGG16 model achieved very good results while
tested on our dataset. In Figure 4 we can see the confusion
matrix for the classification calculated on the basis of 30
videos with about 800 frames each. The classification results
were taken in order to calculate the number of eye blinks per
video. The results were evaluated using two error measures:
Mean Absolute Error (MAE) and Root Mean Squared Error
(RMSE). The Table 1 shows the corresponding error values
with the comparison of classification by simple EAR
threshold. As we can deduce from the table, CNN model gives
much better results with lower error rates compared to simple
EAR.

Fig. 4 Confusion matrix for classification by VGG16



Table 1 Confusion matrix for classification by VGG16

Metric VGG16 EAR threshold

MAE 3.55 25.38

RMSE 5.41 32.7

B. Mouth state detection

Given that the data was annotated as either open or closed
mouth, it is difficult to estimate the accuracy of the calculated
metric in terms of mouth state. For the purposes of quality
control, we applied a threshold of 5.5 to the MAR value, and
any value above this threshold is deemed an open mouth.

Based on the binary classification of a mouth state to evaluate
the correctness of detection, we computed the average
accuracy, Area Under Receiver Operating Charateristic Curve
(AUROC), and F1 score for sample 5 recordings. The mouth
state classification achieved great results, with an average
accuracy score of approximately 0.915, an average AUROC
of 0.895, and an average F1 score of 0.787. This ensured that
the MAR values calculated for specific frames accurately
reflected the mouth's actual condition.

Fig. 5 Exemplary frame wit EAR and MAR values calculated

C. Respiratory rate detection

For the purposes of the problem, a mean respiration length
was calculated. A duration of a single breath was obtained by
taking the number of frames between valleys in the signal
resulting from the processing described in Section IV-C and
dividing it by the frame rate of the Lepton camera. The mean
lengths varied between recordings, however, the overall
average came to about 3 seconds per breath. Medical studies
show that the average respiratory rate for adults is between 12

and 20 breaths, which means that the results are consistent
with medical knowledge. An example signal is presented in
Fig. 6.

Fig. 6 Respiration signal resulting from processing thermal imaging data

D. Drowsiness detection

The model was trained using 92 videos, with 59
demonstrating alert drivers and 33 demonstrating drowsy
drivers. It was trained with the Adam optimizer with early
stopping based on the number of epochs in which the balanced
accuracy score on the validation dataset did not decrease. The
balanced accuracy score, presented in Fig. 7, is defined as the
mean of recall for each predicted class.

Fig. 7 Balanced accuracy score on the validation dataset

With such a limited dataset, the model was able to achieve
balanced accuracy of approximately 85%, which is an
extremely encouraging score.



VI.SUMMARY

In the course of this research, a driver drowsiness detection
system was developed. It is based on a multimodal approach
and makes use of both RGB and thermal cameras. We were
therefore able to obtain the driver's physiological
characteristics in a non-invasive manner. With information
regarding a participant's eyes, mouth, and breathing rate, we
were able to achieve a validation accuracy of approximately
0.85. This result demonstrates that this particular type of
system is reliable, and with additional data samples, it is
possible that it could be improved even further. It is possible
that the addition of vehicle state variables that are commonly
used in the automotive industry could further improve the
prediction and increase overall road safety.
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