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I. INTRODUCTION

W przygotowaniu...

II. BACKGROUND

III. STEWART PLATFORM SIMULATION

The selected motion platform (MotionSystems PS-6TM-
150)  is  a  six  degree of  freedom Stewart  Platform. Unlike
typical Stewart Platforms that are driven by linear motors or
hydraulic  actuators,  this  particular  model  is  driven  by  six
regular rotary motors, through a high gear ratio gearbox that
are hidden in all  3  sides  of  the  platform. This  allows the
platform to have a compact design while maintaining high
load requirements (the platform can handle up to 150kg of
load). 

Figure 1. MotionSystems PS-6TM-150 Stewart platform [2].

The arms connecting top and bottom parts of the platform are
configured with a universal joint on the top and a spherical
joint on the bottom that connects to an additional short arm
fixed  to  the  gearbox  output  shaft.  This  arm  arrangement
gives the platform an impressive movement range with 52°
pitch,  50,6°  roll,  45°  yaw  angles  and  22cm surge  (front-
back),  20cm sway  (left-right)  and  23cm heave  (up-down)
linear  movements.  The  platform has  a  solid,  stable  base,
supported  by  3  adjustable  legs  and  3  wheels  for
transportation,  with  an  additional  option  of  anchoring  the
platform to the ground by using pre-installed mounting holes.
This design forms a professional motion platform with very
high  movement  repeatability  and  impressive  performance,
that is also safe for the user with safety integrity level up to 3.
[1]  The  software  required  to  control  the  platform
(ForceSeatPM)  is  also  a  MotionSystems  product  and  is
included with the platform. It  has built  in  integrations for
most popular simulators and games (e.g. VBS3/4, Microsoft
Flight  Simulator  2020,  X-Plane12,  Matlab/Simulink  and
many more [3]). Additionally it can do hardware diagnostics,
monitor  platform  movements  and  compensate  for  head
movement  in  VR  applications  (through  VR  HeadWay
plugin). It also supports development of custom applications
through  an  SDK  (ForceSeatMI/ForceSeatDI,  available
separately)  that  supports  Unity,  Unreal  Engine,
Matlab/Simulink, as well as native C/C++/C# and Python.
[2]

Simulation  was  implemented  using  multibody  physics
provided  by  Bullet  Physics  Engine.  “Bullet  solves  the
equations  of  motion  for  articulated  rigid  bodies  in
generalized  coordinates  while  simultaneously  satisfying
physical  constraints  including  contact,  joint  limits  and
actuator  models.”  [4]  Multibody  physics,  in  contrast  to
rigidbody physics, offers fully stiff joints between elements
by simulating only those degrees of freedom that are needed
for  particular  joints  between  physics  elements.  This
advantage  however  comes  at  a  cost,  that  the  structure  of
connected elements must form a tree (it cannot have cycles).
To  overcome  this  limitation  the  physics  model  was
assembled  from  two  separate  multibody  trees,  connected
together using regular rigidbody physics joints. The first tree
consists of the base of the platform along with all six motor
shafts with the short arm that are connected to the base using
a revolute joint. Those shafts are driven by simulated motors,
that allow control of current angle of rotation by setting a
position target in degrees. The motor simulation tries to reach
that position, within a limit defined by a maximum impulse.
The second multibody tree used in the simulation consists of
the top part of the platform and all its arms, connected to the
top by a universal joint created by using two revolute joints
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and an additional multibody node between the top and the
arm. Both multibody trees are then connected together at the
spherical joints on the bottom of the arms, using a point to
point constraint.

Figure 2. Bottom multibody tree.

Figure 3. Top multibody tree.

Both  multibody trees  are  shown on  figures  2  and  3.  The
yellow frames represent a multibody node while the green
lines show the rotation axes of revolute joints between the
nodes. The yellow lines show connections between objects.

A physics model prepared in this way behaves just like
the real platform – it is controlled by controlling the angles of
rotation of each motor. The physics engine then calculates
positions and rotations of each element based on the defined
constraints with a constant time step of 5ms (200Hz), using
Runge-Kutta (RK4) integration for additional accuracy.

Figure 4. Control points.

To control this physics model it is necessary to use the same
methods that are used in real Stewart platforms. The control
algorithm has to calculate desired rotations of all six motors
for an input consisting of top platform position and rotation.
One such method is inverse kinematics analysis. “It is simple
to solve compared to forward kinematics and can be used to
plan a specified trajectory that uses leg lengths by providing
any specified position of the centre of the platform top plate”.
[5] The selected method controls the platform by performing
inverse kinematics to calculate desired lengths of each arm,
based  on  arm  origin  points  on  the  bottom  platform  (not
moving)  and  end  points  on  the  top  platform (rotated  and
translated with the desired input). The arm lengths are then
used to calculate the desired motor rotations. This process is
illustrated  on  figure  4.  The  red  points  show the  arm end
points on the top platform, magenta coloured points are the
arm  origin  points  and  yellow  lines  represent  the  arms.
Additionally cyan points show the arm end points projected
onto the plane of the platform base, that are used internally in
the  inverse  kinematics  process.  A  complete  model  of  the
platform is shown on figure 5. In addition to previous figures
it shows the local coordinate systems of each motor shaft as
red, green and blue lines originating from each shaft, and a
complete graphical model.

Figure 5. Final platform model.

The last  essential  part of  the platform simulator was a
method of transmitting the control parameters from the rover
simulation.  The  lunar-martian  rover  simulator  provides  a
telemetry  API  that  can  be  used  to  query  current  rover
simulation  parameters  using  UDP over  network,  by  using
their  string  paths.  The  API  also  supports  setting  up  a
persistent cyclic read where the rover simulator itself sends
the requested values with specified send rate. This mode is
more efficient than querying for values because it sends only
a  short  id  number  instead  of  a  full  string  path,  and  also
provides lower latency, therefore it was chosen for handling
the  communication  between  simulators.  The  data  that  are
transferred consist of 3 float values representing the pitch,
roll  and  yaw  angles,  and  are  available  under
“vehicle/position/pitch”,  “vehicle/position/roll”  and
“vehicle/position/yaw” paths in the rover simulator telemetry
API. The data rate was configured at 30 sends per second, so
the rover simulator sends one data packet every 33ms, that
consists of the 3 selected values, their id numbers and the
packet header, which in total make up 42 Bytes of data. As
soon as this packet arrives, the rotation angles are written to a
data structure shared with the main application thread (the
network communication runs as an asynchronous task), and
then  are  sent  to  the  platform  control  algorithm  in  the



application  update  loop.  In  addition to  sending  simulation
parameters, the telemetry API has an integrated method of
measuring latency between the connected applications. Both
applications, at any time can send a ping request packet and
the other side will respond with a response packet, allowing
for measurement of the round trip latency. This method is
used in all latency tests.

To  sum  up,  the  process  of  creating  a  simulated
counterpart  of  a  mechanical  device  used  in  this  project
consists of several steps. First of all, it is essential to have an
accurate 3-dimensional model of the device, that includes all
moving parts.  This model can be created in  3d modelling
software based on the device’s technical drawings (as done in
this  project),  or  exported  directly  from  CAD  software  if
access  to  such  data  is  available.  Any  errors  in  parts
dimensions  made  at  this  stage  will  directly  influence  the
physics simulation, so care must be taken to minimize them.
The  second  step  is  to  create  a  physics  model,  using  the
obtained graphical model. This involves creating one or more
multibody trees with one node per each moving part of the
device and defining constraints that  join the parts together
and/or  limit  their  movement.  Proper  graphical  model
preparation  makes  this  step  much  faster  –  it  should  be
prepared in a form of an object tree where objects directly
influencing  each  other  (e.g.  joined  by  a  rotational  or
translational  joints)  are arranged in a  parent/child relation.
Furthermore,  placing  rotary  objects  origins  in  the  axis  of
their rotation at modelling stage eliminates the need to set up
joint offsets during joint configuration.

Figure 6. End result.

The  last  step  is  to  implement  software  needed  for  the
machine to function correctly. A well defined physics model
will very closely match the real device’s behaviour so it is
necessary to use the same control methods as are used in the
real device.  In this project the software was divided into two
parts – a low level component that directly drives the motors,
based on the desired platform position and rotation, and a
high level component that receives telemetry data from the
rover simulator and uses the low level driver to control the
platform. The end result is shown on figure 6 which shows
the platform simulator running on a laptop, connected to the
lunar  rover  simulation  running  on  a  mini  CAVE  in  the
Immersive 3D Visualization Lab.

IV. RESULTS

W przygotowaniu...

V. CONCLUSIONS
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