
Simulation of Stewart platform for lunar-martian
rover simulator

Michał Barański
Department of electronics,

telecommunications and informatics
Gdańsk university of technology

Gdańsk, Poland

Abstract—

Keywords—Stewart platform, simulation

I. INTRODUCTION

W przygotowaniu...

II. BACKGROUND

III. STEWART PLATFORM SIMULATION

The selected motion platform (MotionSystems PS-6TM-
150) is a six degree of freedom Stewart Platform. Unlike
typical Stewart Platforms that are driven by linear motors or
hydraulic actuators, this particular model is driven by six
regular rotary motors, through a high gear ratio gearbox that
are hidden in all 3 sides of the platform. This allows the
platform to have a compact design while maintaining high
load requirements (the platform can handle up to 150kg of
load).

Figure 1. MotionSystems PS-6TM-150 Stewart platform [2].

The arms connecting top and bottom parts of the platform are
configured with a universal joint on the top and a spherical
joint on the bottom that connects to an additional short arm
fixed to the gearbox output shaft. This arm arrangement
gives the platform an impressive movement range with 52°
pitch, 50,6° roll, 45° yaw angles and 22cm surge (front-
back), 20cm sway (left-right) and 23cm heave (up-down)
linear movements. The platform has a solid, stable base,
supported by 3 adjustable legs and 3 wheels for
transportation, with an additional option of anchoring the
platform to the ground by using pre-installed mounting holes.
This design forms a professional motion platform with very
high movement repeatability and impressive performance,
that is also safe for the user with safety integrity level up to 3.
[1] The software required to control the platform
(ForceSeatPM) is also a MotionSystems product and is
included with the platform. It has built in integrations for
most popular simulators and games (e.g. VBS3/4, Microsoft
Flight Simulator 2020, X-Plane12, Matlab/Simulink and
many more [3]). Additionally it can do hardware diagnostics,
monitor platform movements and compensate for head
movement in VR applications (through VR HeadWay
plugin). It also supports development of custom applications
through an SDK (ForceSeatMI/ForceSeatDI, available
separately) that supports Unity, Unreal Engine,
Matlab/Simulink, as well as native C/C++/C# and Python.
[2]

Simulation was implemented using multibody physics
provided by Bullet Physics Engine. “Bullet solves the
equations of motion for articulated rigid bodies in
generalized coordinates while simultaneously satisfying
physical constraints including contact, joint limits and
actuator models.” [4] Multibody physics, in contrast to
rigidbody physics, offers fully stiff joints between elements
by simulating only those degrees of freedom that are needed
for particular joints between physics elements. This
advantage however comes at a cost, that the structure of
connected elements must form a tree (it cannot have cycles).
To overcome this limitation the physics model was
assembled from two separate multibody trees, connected
together using regular rigidbody physics joints. The first tree
consists of the base of the platform along with all six motor
shafts with the short arm that are connected to the base using
a revolute joint. Those shafts are driven by simulated motors,
that allow control of current angle of rotation by setting a
position target in degrees. The motor simulation tries to reach
that position, within a limit defined by a maximum impulse.
The second multibody tree used in the simulation consists of
the top part of the platform and all its arms, connected to the
top by a universal joint created by using two revolute joints

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

and an additional multibody node between the top and the
arm. Both multibody trees are then connected together at the
spherical joints on the bottom of the arms, using a point to
point constraint.

Figure 2. Bottom multibody tree.

Figure 3. Top multibody tree.

Both multibody trees are shown on figures 2 and 3. The
yellow frames represent a multibody node while the green
lines show the rotation axes of revolute joints between the
nodes. The yellow lines show connections between objects.

A physics model prepared in this way behaves just like
the real platform – it is controlled by controlling the angles of
rotation of each motor. The physics engine then calculates
positions and rotations of each element based on the defined
constraints with a constant time step of 5ms (200Hz), using
Runge-Kutta (RK4) integration for additional accuracy.

Figure 4. Control points.

To control this physics model it is necessary to use the same
methods that are used in real Stewart platforms. The control
algorithm has to calculate desired rotations of all six motors
for an input consisting of top platform position and rotation.
One such method is inverse kinematics analysis. “It is simple
to solve compared to forward kinematics and can be used to
plan a specified trajectory that uses leg lengths by providing
any specified position of the centre of the platform top plate”.
[5] The selected method controls the platform by performing
inverse kinematics to calculate desired lengths of each arm,
based on arm origin points on the bottom platform (not
moving) and end points on the top platform (rotated and
translated with the desired input). The arm lengths are then
used to calculate the desired motor rotations. This process is
illustrated on figure 4. The red points show the arm end
points on the top platform, magenta coloured points are the
arm origin points and yellow lines represent the arms.
Additionally cyan points show the arm end points projected
onto the plane of the platform base, that are used internally in
the inverse kinematics process. A complete model of the
platform is shown on figure 5. In addition to previous figures
it shows the local coordinate systems of each motor shaft as
red, green and blue lines originating from each shaft, and a
complete graphical model.

Figure 5. Final platform model.

The last essential part of the platform simulator was a
method of transmitting the control parameters from the rover
simulation. The lunar-martian rover simulator provides a
telemetry API that can be used to query current rover
simulation parameters using UDP over network, by using
their string paths. The API also supports setting up a
persistent cyclic read where the rover simulator itself sends
the requested values with specified send rate. This mode is
more efficient than querying for values because it sends only
a short id number instead of a full string path, and also
provides lower latency, therefore it was chosen for handling
the communication between simulators. The data that are
transferred consist of 3 float values representing the pitch,
roll and yaw angles, and are available under
“vehicle/position/pitch”, “vehicle/position/roll” and
“vehicle/position/yaw” paths in the rover simulator telemetry
API. The data rate was configured at 30 sends per second, so
the rover simulator sends one data packet every 33ms, that
consists of the 3 selected values, their id numbers and the
packet header, which in total make up 42 Bytes of data. As
soon as this packet arrives, the rotation angles are written to a
data structure shared with the main application thread (the
network communication runs as an asynchronous task), and
then are sent to the platform control algorithm in the

application update loop. In addition to sending simulation
parameters, the telemetry API has an integrated method of
measuring latency between the connected applications. Both
applications, at any time can send a ping request packet and
the other side will respond with a response packet, allowing
for measurement of the round trip latency. This method is
used in all latency tests.

To sum up, the process of creating a simulated
counterpart of a mechanical device used in this project
consists of several steps. First of all, it is essential to have an
accurate 3-dimensional model of the device, that includes all
moving parts. This model can be created in 3d modelling
software based on the device’s technical drawings (as done in
this project), or exported directly from CAD software if
access to such data is available. Any errors in parts
dimensions made at this stage will directly influence the
physics simulation, so care must be taken to minimize them.
The second step is to create a physics model, using the
obtained graphical model. This involves creating one or more
multibody trees with one node per each moving part of the
device and defining constraints that join the parts together
and/or limit their movement. Proper graphical model
preparation makes this step much faster – it should be
prepared in a form of an object tree where objects directly
influencing each other (e.g. joined by a rotational or
translational joints) are arranged in a parent/child relation.
Furthermore, placing rotary objects origins in the axis of
their rotation at modelling stage eliminates the need to set up
joint offsets during joint configuration.

Figure 6. End result.

The last step is to implement software needed for the
machine to function correctly. A well defined physics model
will very closely match the real device’s behaviour so it is
necessary to use the same control methods as are used in the
real device. In this project the software was divided into two
parts – a low level component that directly drives the motors,
based on the desired platform position and rotation, and a
high level component that receives telemetry data from the
rover simulator and uses the low level driver to control the
platform. The end result is shown on figure 6 which shows
the platform simulator running on a laptop, connected to the
lunar rover simulation running on a mini CAVE in the
Immersive 3D Visualization Lab.

IV. RESULTS

W przygotowaniu...

V. CONCLUSIONS

REFERENCES

[1] PS-6TM-150 Product card - https://motionsystems.pl/wp/wp-
content/uploads/2020/08/MotionSystems_ProductCard_PS-6TM-
150.pdf

[2] MotionSystems PS-6TM-150 - https://motionsystems.pl/product/6dof-
pl/ps-6tm-150/

[3] List of supported aplications - https://motionsystems.pl/supported-
games/

[4] Yie Tan, Tingnan Zhang, Erwin Coumans, Atil Iscen, Yunfei Bai,
Danijar Hafner, Steven Bohez and Vincent Vanhoucke, Sim-to-Real:
Learning Agile Locomotion For Quadruped Robots,
arXiv:1804.10332

[5] Berkay Volkaner, S. Numan Sozen, V. Emre Omurlu, Realization of a
Desktop Flight Simulation System for Motion-Cueing Studies

	I. Introduction
	II. Background
	III. Stewart platform simulation
	IV. Results
	V. Conclusions
	References

