
VR game with variable dynamics of movement for

assessing the usability of a spherical walk simulator

Daniel Skrobot, s197267@student.pg.edu.pl

Abstract

This article describes the creation of virtual reality game for VR headset and
VR CAVE environment. Designed to integrate with a spherical movement
simulator. The primary objective was to develop a game that influences
player movement in a controlled and user-friendly manner. This game is
engineered to affect the player’s current motion in hinting approach. By
developing this application, we are able to collect valuable data from the
VirtuSphere motion system. Collected data will be crucial in conducting
future research focused on evaluating the usability of the spherical walking
simulator as a method of navigating within the virtual world.

Keywords: Virtusphere, Predicting Player Movement VR, Walk Simulator
VR Game

1. Introduction

With ongoing progress in technology, new techniques for creating im-
mersive experiences such as virtual reality are emerging. Progress requires
inventing new techniques of communication with virtual environments. One
way to communicate with the virtual spaces is through controllers or haptic
devices. These tools enable users to interact with the virtual world. How-
ever, when we take in consideration locomotion, then usage of such devices
may limit user experience and immersion due to lack of actual movement
that reflect real life.

Current technology doesn’t limit itself to only controllers. Some investors
created device that allow a user to move in similar manner to a human being
and by utilizing HMD (Head Mounted Display) movement is reflected in
the virtual world. These devices allow for omnidirectional movement in any
direction. Notable examples include VirtuSpehre and Kat Walk.



A system known as VirtuSphere stands out for being the most user-
friendly. That system allow for free movement in any direction. The primary
challenge with this technology is ensuring user safety. As users are engaged in
virtual reality, their heads are covered by an HMD (Head Mounted Display),
limiting their real-world awareness and ability to react to their physical sur-
roundings. Designed for immersive virtual environments, the VirtuSphere is
an innovative platform enabling unrestricted, omnidirectional motion. Its de-
sign is inspired by a hamster wheel, granting VR users the ability to navigate
smoothly in any direction they choose by stepping[1, 2].

Despite many advantages, it has disadvantages. The most important
is platform lack of supporting player movement or working against it. So
basically, user uses it as a platform that allows him to move. Although
missing part such as simulating different terrain, weather condition or special
effects that impact user motion. This lack of feedback decreases user’s feeling
of immersion[3, 4].

The motivation for developing a game to assess the usability and effec-
tiveness of a spherical walk simulator originated from changes made to the
sphere’s motor system. The concept of the game was to guide user behavior
at specific moments with feedback on actual behavior of user movement and
new motor system. By gathering and analyzing data collected from game-
play, it allows determining the practicality and immersive experience of a
new system.

The VirtuSphere, located in the Immersive 3-D Visualization Laboratory
at the Gdańsk University of Technology, was used for the development and
testing of the game that influences player movement[5].

2. State of knowledge

In today’s technological landscape, there is a growing emphasis on devel-
oping systems that replicate movement within virtual reality. The overar-
ching challenge in this domain, however, lies not in their development but
more critically in their ability to deliver an authentically immersive expe-
rience. Such systems must not only be straightforward for users to engage
with, but also need to feel natural and intuitive.

Previous research has primarily focused on developing a new sensory sys-
tem for omnidirectional platforms Virtusphere, which allows users to move
freely in a virtual environment. Current platforms of this type, however, do
not provide any feedback to VR applications, and the user’s orientation is

2



determined solely by the VR headset. To enhance this setup, an additional
sensory system is needed that would collect data about the user’s movement,
not just their orientation[6].

Prior studies as well concentrated on integrating sensors with the Virtu-
Sphere, utilizing these sensors and engines to enhance user movement feed-
back in virtual reality. An application was developed specifically to simulate
ascending and descending hills. This application gathered data about the
user’s movements, which was then relayed to the engines. These engines, in
turn, provided responsive feedback to the user, mimicking real-world physical
movements in the virtual environment[7].

3. Solution proposal

To the best of the author knowledge, this work introduces virtual re-
ality application that works with new motor system that has been devel-
oped in Immersive 3-D Visualization Laboratory at the Gdańsk University
of Technology[5]. Basically, the idea of the game was to create an application
which integrated with a spherical walking simulator. In this game, changes
in the player’s walking speed and direction would be deliberately enforced in
a controlled manner.

As the execution environment for the project, Unreal Engine 5 was se-
lected. The game was created in UE Blueprints and in C++ language.

The game was based on the platform game genre. The key to succeeding
is to overcome the entire map and collect all the necessary points. The map
will consist of platforms where we will have limited movement abilities. The
game suggests to the player how they should move at a given moment. The
game suggest optimal moves, e.g., a turn of 45°, 90°. In the game, there are
ramps that will force the player to approach or descend them. The game
map contains a place where the player will be exposed to instability such as
swaying, a rope bridge or affect of the wind. The game indicate what pace
of player movement is optimal at a given moment, e.g., whether they should
stop, walk slowly, or run.

The pivotal aspect was the development of a map editor, as we anticipated
from our research and testing phase the need to effortlessly experiment with
various movement scenarios. The concept involved utilizing a PNG image
file, which could be easily edited using various image editing software. This
allowed us to change the colors and RGB values that corresponded a specific
type of platform and movement.

3



RGB values corresponding to specific information about platform:

• Red - defines platform type

• Green - defines platform direction and player movement direction

• Blue - specifies player movement type

The value of the red channel represents the type of platform in the
following way:

• 255 – this value indicates that there is no platform at this location

• 0 – this value means that there is a default platform at this location

• 10 – inclined platform type (upward movement)

• 20 – inclined platform type (downhill movement)

• 30 – right turn platform type

• 40 – left turn platform type

• 50 – swinging platform type

Meanwhile, the value of the green channel represents the direction of a
given platform:

• 255 – this value indicates that there is no direction at this location

• 0 – this value means that the direction of the platform at this location
is forward

• 50 – platform direction to the right

• 250 – platform direction to the left

However, the value of the blue channel represents the type of movement
on a given platform:

• 255 – no defined movement

• 0 – running

4



• 125 – marching

• 250 – a special type indicating the player’s starting position

This kind of image then is processed by Unreal Engine 5 which reads the
map content in PNG format with RGB encoding. The logic for reading the
PNG image and interpreting its values is written in C++, enabling precise
color mapping to platform properties. The map is generated based on Actor
blueprint types, which override the basic version of the class created in C++.
These blueprints allow for further customization and the addition of unique
features to each platform, such as specific behaviors or interactions with the
player.

Figure 1: View on scene from debug camera perspective

In the game, player movement parameters have been implemented, which
include identifying the type and direction of their movement, as well as the
way these movements are integrated with a specific gaming platform. Key
aspects such as the player’s movement direction vector, their speed, and
rotation are precisely monitored. These parameters, in particular, play an
important role as they affect how the player experiences and interprets the
virtual world. All this data is collected and processed by the game applica-
tion.

Additionally, a collision checking system has been implemented in the
game, which allows for the precise determination of the player’s current po-
sition and identification of the platform they are on. This system not only
detects the player’s contact with various elements of the game environment

5



but also analyzes the type and properties of the platform on which the player
is currently standing.

Parameters originating from the sphere are read by a set of sensors which
are embedded in four wheels located centrally under the simulator. These
data are transmitted through a server, which is the controller of the entire
system. Information transmitted by the server is made available through a
specially designed plugin, which allows for the integration of my game with
the VirtuSphere.

Figure 2: Presents a blueprint responsible for reading data and player movement based
on information received from the system operating the sphere

Implemented a logging system in the application that enables the collec-
tion of data into a CSV file.

Information contained in each row of the log generated by the application:

• CurrentTime – current game / application time

• PlatformType – type of platform

• PlatformDirection – direction of the platform

• PlatformMovementType – type of movement on the given platform

• PlayerVelocity.x – player’s velocity on the X-axis

• PlayerVelocity.y – player’s velocity on the Y-axis

• PlayerVelocity.z – player’s velocity on the Z-axis

• PlayerPosition.x – player’s position on the X-axis in the scene

6



• PlayerPosition.y – player’s position on the Y-axis in the scene

• PlayerPosition.z – player’s position on the Z-axis in the scene

• PlayerRotation.Pitch – rotation around the Y-axis of the entire player
character

• PlayerRotation.Roll – rotation around the X-axis of the entire player
character

• PlayerRotation.Yaw – rotation around the Z-axis of the entire player
character

• PlayerCurrentSpeed – scalar speed of the player

• UnixTimeStamp[us] – time from the sphere controller, expressed in
microseconds

• ControllerId – controller identifier

• MotorFlags – motor flag

• HallPosition – reading from the Hall effect sensor

• EncoderPosition – encoder position

• MotorVelocity – rotational speed of the motor expressed in revolutions
per minute

• MotorVoltage – voltage in the motor expressed in volts

• MotorCurrent – current in the motor expressed in amperes

4. Experiments and testing

Testing was carried out in the VirtuSphere equipped with an upgraded
motor system. The initial tests focused on verifying the communication
between the application and the server managing this new motor system, as
well as ensuring the accurate transmission of data from the controllers and
the motor’s state to the application.

7



Figure 3: Presents logged data from the test of the application and the sphere

However, during these tests, several challenges were encountered. A sig-
nificant issue was the loss of signal between the Head Mounted Display
(HMD) and the sensors tracking the headset. This problem was attributed
to the sphere’s composition, which is made of a composite material, and a
shortage of sensors in the Immersive 3-D Visualization Laboratory. Conse-
quently, this led to frequent connection losses. A potential solution to this
problem would be the addition of more sensors to ensure a broader coverage
for more reliable tracking.

Another concern identified during the testing phase was the presence of
latency issues. These occurred between the application and the server, which
operates the control system for the new motor

5. Summary

This article delves into the development of a virtual reality game, specif-
ically designed for the VirtuSphere, which is enhanced by its new motor
system. The primary goal of this game is to guide player movements in a
controlled and intuitive manner. A significant aspect of this project is the
collection of data that will allow understanding the correlation between the
user’s walking characteristics and the parameters of the spherical walking
simulator.

8



References

[1] L. Bazavan, H. Roibu, I.-C. Resceanu, N. Bizdoaca, Study regarding
improving of full immersion for virtusphere system (2020).

[2] W. S. Medina Eliana, Fruland Ruth, Virtusphere: Walking in a human
size vr hamster ball, Proc. of the Human Factors and Ergonomics Society
Annual Meeting 52 No. 27 (2008) 2102–2106.

[3] L. Bazavan, H. Roibu, N. Bizdoaca, Strategy control of drive mechatronic
system for virtusphere with two actuators (2022).

[4] M. T. Zdzis law Kowalczuk, Sphere drive and control system for haptic
interaction with physical, virtual, and augmented reality, IEEE Transac-
tions on Control Systems Technology PP (2018) 1–15.

[5] J. Lebiedź, A. Mazikowski, Image projection in immersive 3d visualization
laboratory, Proc. Comput. Sci. 35 (2014) 842–850.

[6] L. Bazavan, H. Roibu, S. Cismaru, D. Rosca, N. Bizdoaca, Design of
a new sensor architecture for mechatronic systems interconnected with
virtual environments (2022).

[7] L. Bazavan, H. Roibu, S. Cismaru, N. Bizdoaca, Vr application for virtual
environment with response to users’ motion (2023).

9


