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Abstract. Among the numerous applications of speech-to-text tech-
nology is the support of documentation created by medical person-
nel. There are many available speech recognition systems for doc-
tors. Their effectiveness in languages such as Polish should be veri-
fied. In connection with our project in this field, we decided to check
how well the popular speech recognition systems work, employing
models trained for the general Polish language. For this purpose, we
selected 100 words from the International Classification of Diseases
dictionary, the Polish-language version of the International Statisti-
cal Classification of Diseases and Health Problems. The words were
read into a microphone by five women and five men and also gener-
ated with a speech synthesizer using a male and a female voice. This
resulted in 1,200 recordings tested with the following systems: Whis-
per, Google speech-to-text, and Microsoft Azure speech-to-text. The
achieved word recognition performance is reflected by the calculated
metrics: WER, WIL, Levenshtein distance, Jaccard distance, MER,
and CER. Results show that the highest efficiency for most cases
was obtained by Azure speech-to-text. However, none of the tested
models is ready for voice-filling medical records, describing cases,
or prescribing treatment, because the number of errors made when
converting speech to text is too high.

1 Introduction

Over the past decade, speech-to-text (STT) systems, also called au-
tomatic speech recognition (ASR) systems, have rapidly developed.
The development was made possible by advances in deep learning
theory and the growing demand for speech transcription systems or
intelligent voice assistants. It included growth in the accuracy of
these systems and an application for more languages than just En-
glish. Nowadays, the dominant approach to developing speech-to-
text systems is based on neural networks, which achieve outstanding
results in the transcription of recorded text. Systems such as Deep-
Speech [11] or Recurrent Neural Network Transducer [5] can be
given as examples. However, solutions using the Transformer-type
architecture introduced in the [19] have received the most attention in
recent years. Based on this idea, solutions such as OpenAl Whisper
[16] and Conformer [10] have been developed that have achieved a
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Word Error Rate (WER) of less than 5% on different English datasets.
Moreover, the authors in [16] show that their model can work for lan-
guages other than just English. As a result, high accuracy has been
achieved in transcribing everyday speech, but there are still solutions
tailored to some domains of applications that are insufficient. To ad-
dress this issue in our work, we tested 3 systems: OpenAl Whisper,
Google Speech-To-Text [3], and Azure Speech-To-Text [4] on 100
words from the International Classification of Diseases (ICD) dictio-
nary for the Polish language. A list of medical terms derived from
the dictionary is included for interested readers as supplementary
material. Our team made recordings of these 100 words for 5 male
voices, 5 female voices, 1 synthetic male, and 1 synthetic female
voice, giving us 1200 recordings. We evaluated each STT system on
this dataset and, for each of them, calculated a set of 6 different met-
rics designed for automatic speech recognition tasks. These metrics
are WER, WIL, Levenshtein distance, Jaccard distance, MER, and
CER. These metrics reflect how tested models are ready for voice-
filling medical records, describing cases, or prescribing treatment,
since the number of errors made when converting speech to text is
crucial in this application domain.

2 Methods

This section describes methods; it includes a description of off-the-
shelf, most common speech-to-text (STT) engines followed by met-
rics used in the experiments. The first subsection is dedicated to STT
tools description, in which Whisper, Google STT, and Azure STT
are included. The next subsection presents the metrics used, a de-
scription, and corresponding mathematical formulas.

2.1 Speech-to-text tools

There are various ready-to-use speech-to-text engines. Many of them
support multiple languages. It is easy to notice that they work well for
English on data that does not contain specialized domain terms. This
study tests three of the most well-known tools with speech excerpts
pronounced in Polish using medical terminology only. All these tools
were used in a configuration that supports the Polish language; in
other words, their authors trained them on datasets also in this lan-
guage. These engines are Whisper (small, medium, large versions),



Google speech-to-text, and Azure speech-to-text, and those will be
described briefly in the following subsections.

2.1.1 OpenAl Whisper

Whisper is an automatic speech recognition (ASR) system created
by OpenAl. It was trained on 600,000 hours of multilingual data that
was collected from the internet. Besides performing ASR, the sys-
tem can translate speech into English upon language identification.
OpenAl provides five model sizes: tiny, base, small, medium, and
large. These variants vary in a number of parameters, which implies
the difference in required VRAM (Video Random Access Memory)
and speed. The system is constantly being improved; the most recent
version (v20230314) was released on March 15th, 2023 [15]. Input
audio for training was split into 30-second samples and converted
into log-Mel spectrograms. For normalization, authors scaled input
to the range from -1 to 1. The license for Whisper is granted by MIT.

2.1.2  Google speech-to-text

Google speech-to-text is an ASR service hosted in Google Cloud.
The tool supports over 125 different languages and dialects, includ-
ing Polish. There are 8 models to be used depending on the use case
and data type we have - Polish is supported by four of them. Details
about the algorithms used behind them are confidential. If needed,
many Google speech-to-text models can be fine-tuned (the Polish
language is supported for model adaptation). The service last update
took place on the 7th of February, 2023. One can access Google’s
speech-to-text tool via a free home page preview or Application Pro-
gramming Interface (API). The second approach is priced based on
the number of speech excerpts successfully processed each month
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2.1.3  Azure speech-to-text

Azure speech-to-text is an automatic speech recognition service
available in Azure cognitive services [4]. It can be used to transcribe
speech in real-time or from recorded audio. Currently, it supports 141
languages and dialects. The exact model used is unknown. There is
an option to fine-tune the base model with custom data for more spe-
cific use cases. Accessing the service can be done via API. The last
update for speech-to-text service took place in February of 2023.

2.2 Metrics

The accuracy of speech-to-text machine learning models is often
measured using a variety of metrics, including WER, WIL, MER, Lev-
enshtein distance, CER, and Jaccard distance. Metric values are usu-
ally presented as fractions or percentages. A fraction of 0.5, for ex-
ample, means that 50% of the results are not positive. These metrics
assess the quality of the model’s transcription output by comparing
it to the ground truth or the original speech input. Following sub-
sections provide an overview of these metrics and their applications
in evaluating the performance of speech-to-text models, highlight-
ing their strengths and limitations. All of the metrics were calculated
using Python packages distance [1], which provides methods for cal-
culating the similarity between arbitrary sequences, and jiwer [2],
which is dedicated to the evaluation of ASR systems.

2.2.1 WER

Word Error Rate (WER) is one of the most popular metrics used to
measure the quality of speech-to-text models [6], [20], [12]. It con-
centrates on the rate of words incorrectly transcribed in the output
compared to the original input length. Precisely it sums: the num-
ber of word substitutions, number of word deletions, and number of
word insertions, then divides this sum by the total number of words
in the reference text. The formula to calculate the Word Error Rate
(WER) is:

S+I1+D

ER =
WER N

where:

S - number of word substitutions (words that were recognized in-
correctly and replaced with another word in the output)

I - number of word insertions (extra words in the output that were
not present in the reference text)

D - number of word deletions (words in the reference text that are
missing in the output)

N - total number of words in the reference text

222 WIL

Word Information Lost (WIL) rate provides a simple performance
measure that varies from 0 when there are no errors to 1 when no
hits. WIL indicates the percentage of incorrectly predicted words be-
tween ground-truth and hypothesis sentences. It is more suitable than
WER for evaluating any application in which the proportion of word
information communicated is more meaningful than the edit cost. At
low error, both provide similar scores, so the inappropriate theoreti-
cal basis for the WER measure is not noticeable. [14] The formula to
calculate the Word Information Lost (WIL) is the following:

H2

WIL=1-
(H+S+D)(H+S+1)

where:
S - number of word substitutions
D - number of word deletions
I - number of word insertions
H- number of hits (correctly transcribed words)

2.2.3 MER

Match Error Rate (MER), like WIL, provides a simple performance
measure that varies from 0 when there are no errors to 1 when there
are no hits. However, it has an even more intuitively simple proba-
bilistic interpretation than WIL. MER 1is the percentage of words in-
correctly predicted. Its value can be measured by subtracting from 1
the ratio of correctly transcribed words to the total number of words
in the reference text. The formula to calculate the Match Error Rate
(MER) is:

S+D+1

MER = -———————
S+D+I+H

1
N

where:

S - number of word substitutions

D - number of word deletions

I - number of word insertions

H- number of hits (correctly transcribed words)

N - total number of words in the reference text



2.2.4 Levenshtein distance

Levenshtein distance, also known as edit distance, is a metric used to
quantify the difference between two strings of characters. It measures
the minimum number of single-character edits (insertions, deletions,
or substitutions) required to transform one string into another. It is
widely used and considered a well-established string similarity mea-
sure, with many applications in natural language processing. More-
over, its great advantage is intuitiveness and ease of understanding.
Its disadvantage, which is worth being aware of when using this met-
ric, is that it is sensitive to changes in individual characters and can
give high scores for small changes in long strings, even if most of the
characters are the same.

2.2.5 CER

Character Error Rate (CER) is a metric that concentrates on the min-
imum number of character-level operations required to transform the
reference text into the output text, similar to the Levenshtein distance.
This metric is also commonly used in ASR task [8], [7], [18]. The
formula to calculate the Character Error Rate (CER) is:

CER=S+1+DN

where:

S - number of character substitutions

D - number of character deletions

I - number of character insertions

N - total number of characters in the reference text

The CER score represents the percentage of characters in the refer-
ence text that were incorrectly predicted in the speech-to-text model
output. The lower the CER value, the better the performance of the
model. The perfect score for CER is 0, which indicates that no errors
have been made.

2.2.6 Jaccard distance

Jaccard distance is not a metric dedicated to measuring speech
recognition models. However, it can be effectively applied to this
type of problem. It measures dissimilarity between sets. Its value
can be calculated by dividing the difference between the sizes of the
union and the intersection of two sets by the size of the union. The
formula for Jaccard distance is:

JD(A,B) = (JAUB| - |ANB|)JAUB| =1—|AN B||AUB]

where:

A and B - two sets | A| and | B| - the size of A and B

AN B - the intersection of A and B (the set of elements that are in
both A and B)

AU B - the union of A and B (the set of elements that are in either
A or B or both)

Its value ranges from 0, which indicates complete similarity be-
tween the two sets to 1, indicating no similarity between sets.

3 Datasets

For this study, a new dataset has been developed with the intention
of using it in the rapid testing of Polish-language medical speech
recognition systems. This dataset does not constitute a new full-scale
corpus of medical speech, it was created to standardize testing of se-
lected tools. This choice is motivated by the lack of a publicly avail-
able medical corpus in Polish at this time. The purpose of this part

of the research was not to create such a corpus. A full-scale cor-
pus will be created in subsequent phases of the research, which are
not part of this one. The dataset consists of 100 words, which were
recorded individually. As a result, every actor produced 100 record-
ings. The words are medical terms in Polish, selected based on the
International Classification of Diseases (ICD) dictionary version 9
PL. The dataset consists of 1200 recordings in total. 200 recordings
were generated using synthesizer [13], 100 using female voice and
100 using male voice. The rest of the 1000 recordings were prepared
by 10 actors (5 males and 5 females). The overview is presented in
Table 1. A complete list of words and their translation and IPA (Inter-
national Phonetic Alphabet) notation can be seen in the file provided
as supplementary material to this paper, the shortened table image is
presented in Fig.1.

# PL EM IPA
1 adheza adhesion adhzzja

2 adrenalina epinephrine adrenalina
3 agregacja aggregation agregatsja
4 aktywnosc activity aktivnocte
5 aminokwasy amino acids amiinakfasi
6 amoniak ammonia amaonak

7 lamylaza Amylase amilaza
8 analityka analytics analitika
9 antygen antigen antigen
10 badanie examination badane

11 biatko protein biawko

12 chemia chemistry *Emia

13 |czynnik factor 1sinpik

Figure 1: List of sample words with translation and IPA notation

All of the participants were Polish natives, with Polish being their
first language. All of the recordings were made using the home mi-
crophones available to them. This implies that the quality of the
recordings varied between actors. The goal was not to test systems
with clear recordings but to check their performance in a natural en-
vironment. No additional noise has been added. The Audacity free
recording software [17] was chosen for recording. All of the record-
ings were stored in mp3 format. As a result of constituting only a
single word, all recordings are short, with the average length being
1.37 seconds with a 0.37 standard deviation.

Table 1: Dataset summary

Subgroup Number of samples
Number of samples (total) 1200
Number of samples (female voice) 600
Number of samples (male voice) 600
Number of samples (natural voice) 1000
Number of samples (synthetic voice) 200

4 Results

Using the predictions generated by the tools, as described in
Section 2.1. Speech-to-text tools metrics were calculated. The
tools are compared in terms of metrics detailed in section 2.2.
Metrics. Scores for all tools were averaged based on gender and



natural/synthetic voice criterion - later named subsets of the data
domain. The overall average is an average based on all 1200 speech
samples. Female and Male Averages are the averages over 600
samples each, respectively recorded by women + generated by one
female-voiced synthesizer (600 recordings) and men + generated by
one male-voiced synthesizer (600 recordings). The natural average
is calculated based on results for human-recorded samples (1000
recordings), and the synthetic average is computed using samples
generated by a synthesizer (200 recordings). The following charts
represent scores for each metric. The X-axis represents dataset
groups, and the Y-axis represents the score that a specific model

obtained. Tools and their variants are coded with the following
= Whisper (small)
— Whisper (medium)
Whisper (large)
- Microsoft Azure speech-to-text

= Google speech-to-text
colors: g'e sp

Figure 2 visualizes results for word error rate (WER). The best
overall (Average), Average Female, Average Male, and Average Nat-

ural results were obtained by Google STT. In the case of synthetic
recordings, the best results were gained by Microsoft Azure STT.

WER

—

1,2500

1,0000

0,7500

0,5000

0,2500

0,0000

Average Average Average Average Average
Female Male Natural Synthetic

Figure 2: WER per STT tool per data domain subset

The visualization of results with regard to the Word Information
Lost (WIL) rate metric is presented in Figure 3. Google STT obtains
the best results for Average, Average Male, and Average Natural;
Average Female and Average Synthetic best-performing tool is Mi-
crosoft Azure STT.

WIL
1,0000
0,7500
0,5000
0,2500
0,0000
Average Awerage Average Awverage Average
Female Male Natural Synthetic

Figure 3: WIL per STT tool per data domain subset

The results based on Levenshtein distance and Jaccard distance

are presented in Figures 4 and 5, respectively. For both, the best re-
sults were reached using Microsoft Azure STT.

Levenshtein distance
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Figure 4: Levenshtein distance per STT tool per data domain subset

Jaccard distance
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Figure 5: Jaccard distance per STT tool per data domain subset

Figure 6 presents results for Match Error Rate (MER). Again the
finest results were obtained by Google STT and Microsoft Azure
STT. The first one reports the best results for Average, Average Male,
Average Natural, and the latter for Average Female, Average Syn-
thetic.

MER
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0,7500 —’\/\
0,5000
0,2500
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Average Average
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Natural Synthetic

Figure 6: MER per STT tool per data domain subset

The last measure considered is Character Error Rate (CER). It is
shown in Figure 8. The Microsoft Azure STT reached top results
across all subsets of the data domain.



Metric WER WiL Levenshtein distance Jaccard distance MER CER

Score (Overall Average)  0.,5633 0,7437 45,7500 0,9393 0.5369 0,1591
Score (Female Average) 0,6083 0,7462 46,3333 0,9559 0.,5375 01713
Score (Male Average) 05182 0,716 45,1667 09238 0.4578 0,1469
Score (Natural Average) = 0,5260 0,7268 45,5000 0,9534 0.5033 0,1536
Score (Synthetic 0,6050 0,7429 47,0000 0,8470 0,5328 0,1864

Average)

Microsoft Azure STT  Google STT

Figure 7: The best results per data domain subset
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Figure 8: CER per STT tool per data domain subset

Figure 7 shows the best results for each data domain subset. The
colors indicate the tool that was used to achieve specific results. The
legend is presented below the table with the results. Color schema
follows the one used in plots with overall results.

5 Conclusion

A new dataset for this study has been developed. The dataset con-
sists of 100 sample words (medical domain) recorded by 10 actors
and generated using 2 synthetic voices (in total 1200 recordings).
This dataset was used to test well-known ASR tools for their ability
to recognize Polish medical terms. The results have been gathered
and compared between tools with respect to six performance met-
rics (WER, WIL, Levenshtein distance, Jaccard distance, MER, and
CER). The Google STT and Microsoft Azure STT models performed
better than Whisper. Google’s model was best at recognizing natural
voices and spikes to its worst results at synthetic voice transcription.
On the other hand, Whisper models were best at recognizing syn-
thetic voices but also revealed small drops in male voices. Microsoft
Azure STT proved to be very consistent and has very small and rare
spikes. It does not have big synthetic voice recognition spikes like
Google STT and usually performs slightly better than Google STT.
It can be concluded from the obtained results that all models better
recognize male voices than female voices. After conducting these ex-
periments, the authors are motivated to train a model that will allow
us to develop a practical solution for the Polish medical language. To
achieve this, a more complex dictionary with medical terminology
will be created in cooperation with medical personnel. The dictio-
nary will consist of whole expressions and not just individual words.
One of the models tested and presented in this paper will be fine-
tuned. The results presented in this paper show the magnitude of the
problem which is the difficulty of recognizing medical speech in a

not-so-common language by models that have been trained on data
in that language.
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